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In this paper we briefly review some of the existing domain-decomposition coupling of the finite and 
boundary element methods. We also summarize a general interface relaxation framework, originally 
developed for the solution of composite PDEs and extend two interface relaxation algorithms to 
higher dimensional analysis. We further present a new interface relaxation finite element/boundary 
element coupling algorithm, which may be implemented on a distributed parallel or sequential 
computer. The method overcomes some of the limitations of the existing domain decomposition 
coupling methods. We also investigate the convergence of the method. 
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1. Introduction 

The finite element method (FEM) and the boundary element 
method (BEM) are well known as powerful numerical 
techniques for solving wide range of problems in applied 
science and engineering. Each method has its own 
advantages and disadvantages, so that it is desirable to 
develop a combined finite element/boundary element 
method, which makes use of their advantages and reduces 
their disadvantages, and to use the combined method in 
situations where it is appropriate. The conventional coupling 
methods employ an entire unified equation for the whole 
domain by altering the formulation of one of the methods to 
make it compatible with the other, see, i.e., references [1-8] 
not to mention many others. However, the conventional 
coupling methods may destroy the positive characteristics of 
symmetry and bandedness that originally exist in the FEM. 
Furthermore the implementation of the conventional 
coupling procedures requires a suitably integrated finite 
element/boundary element software environment. This 
requires merging two different kinds of programs together to 
form an integrated finite element/boundary element software 
environment, which will demand considerable effort. 

Consequently, it may be necessary to preserve the nature of 
both the FEM and BEM, rather than to force any into the 
other format and thus the domain decomposition coupling 
methods have been developed [9-13]. In these methods, 
separate computing for the BEM and FEM sub-domains and 
successive renewal of the degrees of freedom on the 
interface of both sub-domains are performed to reach the 
final convergence. The domain decomposition coupling 
methods offer many advantages over the conventional 
coupling methods and appear to be promising. However, the 
important issue of convergence of the domain 
decomposition coupling methods is not fully addressed. The 
problem is still open for establishing the convergence 

conditions and for the selection of the relaxation parameters. 
Elleithy et al. [14,15] investigated the convergence of the 
sequential Dirichlet-Neumann domain decomposition-
coupling method and research is underway for establishing 
the convergence conditions of the parallel Dirichlet-
Neumann and parallel Neumann-Neumann coupling 
methods. Moreover, some of the existing domain 
decomposition coupling methods may not be applicable in 
problems where the Neumann boundary conditions are 
specified on the entire external boundary of the FEM or 
BEM sub-domains. The overlapping domain decomposition 
coupling method is capable of handling such cases [9,10]. 
However, the overlapping may create a serious complication 
in the Schwarz method, even when the global problem is 
having a simple geometry. 

In this paper, we present an interface relaxation algorithm 
for coupling the FEM and BEM. The paper is arranged as 
follows: in Section 2, a summary of a general interface 
relaxation framework, originally developed for the solution 
of composite PDEs [20] is presented. Section 2 further 
extends two interface relaxation algorithms to higher 
dimensional analysis. Section 3 reviews various existing 
domain decomposition coupling methods. A new interface 
relaxation-coupling algorithm, which overcomes some of 
the limitations of the existing domain decomposition 
coupling methods, is presented in Section 4. Section 5 
establishes the convergence conditions of the new interface 
relaxation coupling method. A simple numerical example is 
given in Section 6. 

2. Interface Relaxation 

Domain decomposition has proven to be an effective means 
of partitioning the task of solving differential equations 
numerically. It is mainly an algebraic approach and works 
by splitting the domain of the original problem into sub-
domains which can be coupled in many ways. Interface 



 

relaxation is more general than the traditional domain 
decomposition methods in that it allows unrelated PDE 
problems on different sub-domains, see references [16-20]. 

Global-based domain decomposition methods such as the 
overlapping Schwarz or the substructure-type methods are 
not applicable to general composite PDE problems. For 
simple continuity interface conditions, there may exist 
various Schwarz splitting-type methods, which alternatively 
solve Dirichlet and Neumann problems on adjacent sub-
domains in a way or another. However, the interface 
conditions for composite PDEs may appear in a more 
complicated forms, thus, more general techniques are 
needed to handle complicated interface conditions from 
composite PDEs. Mu [20] presented a general framework 
for solving composite PDEs based on interface relaxation 
and it may be summarized as: 

1- Denote the local PDEs by: 

iii fuL =  in iΩ  for ,k,,,i !21=    (1) 

where iL  is a differential operator with the general 
boundary conditions specified by: 

iii guB =  on iΓ       (2) 

where iB  is a boundary condition operator and ig  is a 
continuous function. 

2- Define ijΓ  as the interface between two adjacent sub-

domains iΩ  and jΩ . Let ( )iI  be the indices of those sub-

domains that are neighbors of sub-domain iΩ . Define the 

boundary value problem n
iP  that is solved on iΩ  at the n th 

relaxation step as: 

i
n
ii fuL =  in iΩ ,     (3.a) 

n
ij

n
i

n
ij buB =  on ijΓ  for ( )iIj ∈ ,  (3.b) 

i
n
ii guB =  on Γ∩Γi     (3.c) 

where n
ijB  is a boundary condition operator such that n

iP  is 
well posed. 

The interface relaxation iteration (3) is defined on the sub-
domains independently. Details of the iteration are specified 
by an interface handler called a relaxer. It provides for the 
interface ijΓ  to sub-domain iΩ  the right hand side data n

ijb  
of the boundary condition according to certain relaxation 
procedures as well as the parameters in the definition of 

n
ijB . 

Mathematically this framework contains many existing 
domain decomposition methods and also allows the 
extension to a variety of new relaxers. We note here that it 
may be possible to utilize such interface relaxation methods 

for the coupling of FEM and BEM. Many coupling 
algorithms may be developed to overcome the limitations of 
the existing coupling ones. In the remainder of this section 
we will extend two interface relaxation algorithms to higher 
dimensional analysis. 

Rice et al. [19] presented an interface relaxation algorithm 
for the solution of elliptic differential equations. The 
algorithm is classified as a one-step algorithm and it 
estimates a new solution for each sub-domain by solving a 
Dirichlet problem. The values on the interface are obtained 
by adding to the old ones, a geometrically weighted 
combination of the normal derivatives of the adjacent sub-
domains. Extending the algorithm to higher dimensional 
analysis, it may be described as follows: 
Set initial guess 0

iu  for k,...,,i 21=  where k  is the 
number of sub-domains. 

Define 
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ij α1  on ijΓ  for ( )iIj ∈  

where, α  is a relaxation parameter to ensure and/or 
accelerate convergence. 
For ,...,,n 210= , do until convergence: 
 for k,...,,i 21=  solve: 

i
n
ii fuL =+1  in iΩ  

111 +++ = n
ij

n
i

n
ij buB  on ijΓ  for ( )iIj ∈  

i
n
ii guB =+1  on Γ∩Γi  

where, α  is a relaxation parameter to ensure and/or 
accelerate convergence. 

The other interface relaxation algorithm is based on Robin 
interface conditions to transmit information across the 
interface, see reference [17]. The method predicts new 
values at the interface by making a convex combination of 
Dirichlet and Neumann data from the other sub-domains. 
Again, extending the algorithm to higher dimensional 
analysis, it may be described as follows: 
Set initial guess 0

iu  for k,...,,i 21=  where k  is the 
number of sub-domains. 

Define n
j

n
jn

ij u
n
u

b λ+
∂

∂
−=+1  on ijΓ  for ( )iIj ∈  where, λ  

is a relaxation parameter. 
For ,...,,n 210= , do until convergence: 
 For k,...,,i 21= , solve 

i
n
ii fuL =+1  in iΩ  

111 +++ = n
ij

n
i

n
ij buB  on ijΓ  for ( )iIj ∈  

i
n
ii guB =+1  on Γ∩Γi  

3. Domain Decomposition Coupling Algorithms 

Consider Figure 1, where the domain of the original 
problem is governed by Laplace equation and decomposed 
into FEM and BEM sub-domains, i.e., ii inuK Ω=∇ 02 , 
where iK  is the material property in the sub-domain iΩ  
and u  is the potential. Boundary conditions are such that 



 

the potential u , the flux uKq ∇=  or their combination is 
prescribed at each point on the boundary. 

The corresponding boundary integral equation for the BEM 
sub-domain is given by: 

[ ]{ } [ ]{ } BqGuH Γ∈=      (4) 

where u  and q  are column matrices containing the 
boundary nodal values for the potential and the flux. H  and 
G  are influence coefficient matrices. For the FEM sub-
domain, the assembled element equations are given by: 

[ ]{ } { } FfuK Ω∈=       (5) 

where K  is the stiffness matrix for the system, and u  and 
f  are the nodal potentials and integrated flux vectors 

respectively. 

Now, let us define the following potential vectors: 
I
Bu : interface potentials, approached from the BEM sub-

domain 
B
Bu : non-interface potentials in the BEM sub-domain 
I
Fu : interface potentials, approached from the FEM sub-

domain 
F
Fu : non-interface potentials in the FEM sub-domain 

Similarly, one can define the flux and the integrated flux 
vectors for the BEM and FEM sub-domains, respectively. 
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Figure 1:  Domain Decomposed into FEM and BEM Sub-
domains. 

 

Equations (4) and (5) may be partitioned as follows: 
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and 
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At the interface, the compatibility and equilibrium 
conditions should be satisfied, i.e., 

{ } { } II
F

I
B uu Γ∈=    (8) 

{ } [ ]{ } II
B

I
F qMf Γ∈=+ 0   (9) 

where M  is the converting matrix, which depends on the 
interpolation functions used to represent the flux on the 
interface. 

In the remainder of this section we will summarize and 
review some of the existing domain decomposition coupling 
algorithms. 

The sequential Dirichlet-Neumann coupling method may be 
described as follows [12,13]: 
Set initial guess { } { }uu I

B,0 =  
Do for ,...,,n 210=  
 for the BEM sub-domain: 
 solve Equation (6) for { }I

nB,q  
 for the FEM sub-domain: 
 solve Equation (9) for { }I

Ff  

 solve Equation (7) for { }I
nF,u  

 apply { } { } { }I
nF,

I
n,B

I
1nB, uu)(u θθ +−=+ 1  

 where, θ  is a relaxation parameter 

until 
{ } { }

{ } ε<
−

+

+

I
1nB,

I
nB,

I
1nB,

u

uu
 

where, ε  is a given tolerance. 

A drawback of this coupling algorithm is that it may not be 
suited for certain classes of problems where the natural 
boundary conditions are specified on the entire external 
boundary of the FEM sub-domain. 

The parallel Neumann-Neumann coupling algorithm may be 
described as follows [11]: 
Set initial guess { } { }qq I

B,0 =  and { } { }qqI
,0F =  

Do for ,...,,n 210=  
 for the BEM sub-domain: 
 solve Equation (6) for { }I

nB,u  
 for the FEM sub-domain: 
 solve Equations (7) and (9) for { }I

nF,u  

 apply { } { } { } { }( )I
nB,

I
nF,

I
nB,

I
1nB, uuqq −+=+ β  

 apply { } { }I
nB,

I
1n,F qq 1++ −=  

 where, β  is a relaxation parameter 

until 
{ } { }

{ } ε<
−

+

+

I
1nB,

I
nB,

I
1nB,

u

uu
 

where, ε  is a given tolerance. 

This algorithm may not be suited for problems where the 
natural boundary conditions are specified on the entire 
external boundary of the FEM or BEM sub-domains. 

The parallel Dirichlet-Neumann coupling algorithm may be 
described as follows [11]: 
Set initial guess { } { }uu I

B,0 = and { } { }qqI
,0F =  

Do for ,...,,n 210=  
 for the BEM sub-domain: 



 

 solve Equation (6) for { }I
nB,q  

 for the FEM sub-domain: 
 solve Equations (7) and (9) and get { }I

nF,u  

 apply { } { } { }I n,F
I

n,B
I

1nB, uu)(u γγ +−=+ 1  

 apply { } { }I
nB,

I
1n,F qq −=+  

 where, γ  is a relaxation parameter 

 until 
{ } { }

{ } ε<
−

+

+

I
1nB,

I
nB,

I
1nB,

u

uu
 

where, ε  is a given tolerance. 

This coupling algorithm has the same drawbacks as that of 
the sequential Dirichlet-Neumann coupling method. 

4. A New Interface Relaxation Coupling Algorithm 

In this section, we utilize the interface relaxation algorithm, 
originally developed by Rice et al. [19] for the solution of 
elliptic differential equations and extended to higher 
dimensional analysis in Section 2, for the coupling of FEM 
and BEM. The interface relaxation-coupling algorithm may 
be described as follows: 
Set initial guess { } { }uu I

,0F =  and { } { }uu I
B,0 =  

Do for ,...,,n 210=  
 for the BEM sub-domain 
 solve Equation (6) for { }I

nB,q  
 for the FEM sub-domain: 
 solve { } [ ]{ }I

F
I

F qMf =  and Equation (7) for { }I
nF,q  

 apply{ } { } { } { }( )I
nF,

I
nB,

I
nB,

I
1nB, qqαuu +−=+  

 apply { } { }I
1nB,

I
1nF, uu ++ =  

 where, α  is a relaxation parameter 

until 
{ } { }

{ } ε<
−

+

+

I
1nB,

I
nB,

I
1nB,

u

uu
 

where, ε  is a given tolerance. 

5. Convergence of the Interface Relaxation Coupling 
Method 

In this section we will investigate the convergence of the 
domain decomposition coupling method depicted in the 
previous section. We will show the conditions under which 
the iterations, 

)qq(uu I
n,F

I
n,B

I
n,B

I
n,B +−=+ α1  

   (10) 

will converge to the true value of Iu . 

Let us repartition Equations (4) and (5) as follows: 
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and 
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where, 
K
Bu : non-interface known potentials in the BEM sub-

domain 
U
Bu : non-interface unknown potentials in the BEM sub-

domain 
K
Fu : non-interface known potentials in the FEM sub-domain 
U
Fu : non-interface unknown potentials in the FEM sub-

domain 
K
Bq : non-interface known fluxes in the BEM sub-domain 
U
Bq : non-interface unknown fluxes in the BEM sub-domain 

After a series of matrix operations, Equation (10) may be 
written in the following form:  

[ ] cuCI)(u I
n,B

I
n,B ααα ++−=+ 11   (13) 

where, 
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Now, Equation (13) is an iterative method of the form: 

dXDX nn +=+ α1      (14) 

which converges if and only if the set of eigenvalues 
( )ασ D  of the matrix αD  are contained in the unit ball 

),(B 10  in the complex plane. Following the same 
procedures as in previous investigations [14,15], one may 
conclude that the coupling method will converge if: 

1<ix , N,.......,i 21=     (15) 

and if we choose 
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≤≤ 221 1
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ii

i

Ni yx
xminα    (16) 

where, 

NNN iyx,.....,iyx +=+= λλ 111  are the eigenvalues of C . 

The optimum value of the relaxation parameter (α ) may be 
obtained as: 

21λ
))1λ(1Re( t

−
−−=α     (17) 

where, ( )n
t ...λ λλλ 21=  and ( )111 ...1t = . 

6. Numerical Example 

Consider the case of the potential flow in a rectangular 
domain as shown in Figure 2. The two domains BΩ  and 

FΩ  are governed by Laplace equation. The rectangular 
domain is decomposed into the FEM and BEM sub-domains 
with Fax ≤≤0  and BF axa ≤≤ . The boundary conditions 
are selected such that 00 =)y,(u , 200=)y,a(u  and 
zero flux elsewhere. The problem is investigated for 
different values of FB aa  and FB KK . For  1=FB aa , 
the domain is modeled by 18 linear boundary elements and 
40 linear triangular elements (see Figure 2). Tables 1 and 2 
show the applicable range and the optimal values of the 
relaxation parameters determined experimentally using the 
different coupling algorithms described in Sections 3 and 4 
and with different combinations of FB aa  and FB KK . 
Beyond the values given by Table 1, the domain 
decomposition and the new interface relaxation coupling 
algorithms do not converge. The limit and optimum values 
of the parameter α  are found in good agreement with those 
determined theoretically by Equations (15-17). 
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Figure 2:  Potential Flow Problem and Discretization. 
 

 
Table 1:  Applicable range of the relaxation parameters. 

 
  FB KK  

FB aa   0.50 1.0 2.0 

0.2 

α  
β  
γ  
θ  

0.02-0.56 
0.02-0.98 
0.02-0.36 
0.02-0.56 

0.02-0.32 
0.02-0.98 
0.02-0.18 
0.02-0.32 

0.02-0.18 
0.02-0.98 
0.02-0.08 
0.02-0.18 

1.0 

α  
β  
γ  
θ  

0.02-1.32 
0.02-0.98 
0.02-1.98 
0.02-1.32 

0.02-0.98 
0.02-0.98 
0.02-0.98 
0.02-0.98 

0.02-0.66 
0.02-0.98 
0.02-0.48 
0.02-0.66 

4.0 

α  
β  
γ  
θ  

0.02-1.76 
0.02-0.98 
0.02-2.28 
0.02-1.76 

0.02-1.56 
0.02-0.98 
0.02-2.66 
0.02-1.56 

0.02-1.32 
0.02-0.98 
0.02-1.98 
0.02-1.32 

 
 

Table 2:  Optimal values of the relaxation parameters. 
 

  FB KK  

FB aa   0.50 1.0 2.0 

0.2 

α  
β  
γ  
θ  

0.28 
0.24 
0.10 
0.28 

0.16 
0.30 
0.06 
0.16 

0.10 
0.38 
0.04 
0.10 

1.0 

α  
β  
γ  
θ  

0.66 
0.18 
0.38 
0.66 

0.50 
0.20 
0.18 
0.50 

0.32 
0.22 
0.12 
0.32 

4.0 

α  
β  
γ  
θ  

0.88 
0.10 
0.78 
0.88 

0.78 
0.14 
0.54 
0.78 

0.66 
0.18 
0.38 
0.66 

 
 

The same problem is reinvestigated with the boundary 
conditions shown in Figure 3. The problem is solved using 
the interface relaxation coupling algorithm and for 

1=FB aa  and 1=FB KK . The results compare well with 
the theoretical solution and the range of the relaxation 
parameter is found to be 0.02-1.98 with an optimum value 
of 1. It should be noted that this simple problem is not 
solvable using the domain decomposition coupling methods 
presented in Section 3. 

Conclusions 

In this paper, we present a new interface relaxation 
algorithm for coupling the FEM and BEM. The method 
overcomes some of the limitations of the existing finite 
element and boundary element coupling methods. We 
further establish the general convergence conditions of the 
new coupling method. 
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Figure 3:  Potential Flow Problem with Neumann Boundary 
Conditions Specified on the Entire External Boundary of the 
FEM Sub-domain. 

Acknowledgements 

The authors gratefully acknowledge the support of Shinshu 
University and the Japan Society for the Promotion of 
Science, Japan. 

References 

1. Zienkiewicz, O. C., Kelly D. W. and Bettes P., “The 
Coupling of the Finite Element Method and Boundary 
Solution Procedures,” International Journal for 
Numerical Methods in Engineering, Vol. 11, 1977, pp. 
355-375. 

2. Beer, G. and Meek, J. L., “The Coupling of Boundary 
and Finite Element Methods for Infinite Domain 
Problems in Elasticity,” In Boundary Element Methods, 
C. A. Brebbia (ed.), Springer, Berlin, 1981, pp. 575-
591. 

3. Kishimoto, K., Yamaguchi, I., Tachihara, M., Aoki, S. 
and Sakata, M., "Elastic-Plastic Fracture Mechanics 
Analysis by Combination of Boundary and Finite 
Element Methods," 5th World Conference on the 
Boundary Element Method, Hirohima, Japan, 
November, 1983, pp. 975-984. 

4. Swoboda, G., Mertz, W. and Beer, G., “Rheological 
Analysis of Tunnel Excavations by means of Coupled 
Finite Element (FEM)-Boundary Element (BEM) 
Analysis, International Journal for Numerical and 
Analytical Methods in Geomechanics, Vol. 11, 1987, 
pp. 115-129. 

5. Varadarajan, A., Sharma, K. G. and Singh, R. B., 
"Elasto-Plastic Analysis of an Underground Opening by 
FEM and Coupled FEBEM," International Journal for 
Numerical and Analytical Methods in Geomechanics, 
Vol. 11, 1987, pp. 475-487. 

6. Kui, Qi and Zailu, J. "The Elasto-Plastic Analysis of 
BEM and FEM in Structures Composed of Thin 
Plates," Proceedings of the 2nd China-Japan Symposium 
on Boundary Element Methods, Beijing, China, 
October, 1988, pp. 393-400. 

7. Kohno, K., Tsunda, T., Seto, H. and Tanaka, M., 
“Hybrid Stress Analysis of Boundary and Finite 

Elements by Super-Element Method,” In Advances in 
Boundary Elements, Vol. 3, Stress Analysis, C. A. 
Brebbia and J. J. Conor (eds.), Springer, Berlin, 1989, 
pp. 27-38. 

8. Leung, K. L., Zavareh, P. B. and Beskos, D. E., “2-D 
Elastostatic Analysis by a Symmetric BEM/FEM 
Scheme,” Engineering Analysis with Boundary 
Elements, Vol. 15, 1995, pp. 67-78. 

9. Elleithy, W. M. and Al-Gahtani, H. J., "An Overlapping 
Domain Decomposition Approach for Coupling the 
Finite and Boundary Element Methods," Engineering 
Analysis with Boundary Elements, Vol. 24, No. 5, 
August 2000, pp. 391-398. 

10. Stein, E. and Kreienmeyer, M., “Coupling of BEM and 
FEM by a Multiplicative Schwarz Method and its 
Parallel Implementation,” Engineering Computations, 
Vol. 15, No. 2, 1998, pp. 173-198. 

11. Kamiya, N., Iwase, H. and Kita, E., "Parallel Computing 
for the Combination Method of BEM and FEM," 
Engineering Analysis with Boundary Elements, 18, 
1996, pp. 221-229. 

12. Lin, Chin-Ching, Lawton, E. C., Caliendo, J. A. and 
Anderson, L. R., “An Iterative Finite Element-
Boundary Element Algorithm,” Computers & 
Structures, Vol. 39, No. 5, 1996, pp. 899-909. 

13. Feng, Y. T. and Owen, D. R. J., "Iterative Solution of 
Coupled FE/BE Discretization for Plate-Foundation 
Interaction Problems," International Journal for 
Numerical Methods in Engineering, Vol. 39, 1996, pp. 
1889-1901. 

14. Elleithy, W. M., Al-Gahtani, H. J. and El-Gebeily, M., 
"Convergence of the Iterative Coupling of BEM and 
FEM," 21st World Conference on the Boundary Element 
Method, BEM 21, Oxford University, UK, August 
1999, pp. 281-290. 

15. Elleithy, W. M., Al-Gahtani, H. J. and El-Gebeily, M., 
"Iterative Coupling of BE and FE Methods in 
Elastostatics," Engineering Analysis with Boundary 
Elements, Vol. 25, No. 8,August 2001, pp. 685-695. 

16. Funaro, D., Quarteroni, A. and Zanolli, P., “An interface 
procedure with Interface Relaxation for Domain 
Decomposition Methods,” SIAM J. Numer. Anal., 
Volume 25, No. 6, 1988, pp. 1213-1236. 

17. Lions, P. L., “On the Schwarz alternating Method: A 
Variant for Nonoverlapping Subdomains,” In 
Glowinski, R., Golub, G. H., Meurant, G. A. and 
Periaux, J., editors, Domain Decomposition Methods 
for Partial Differential Equations, SIAM, 1990, pp. 
202-223. 

18. Mu, M. and Rice, J. R., “Modeling with Collaborating 
PDE Solvers – Theory and Practice,” Computing 
Systems in Engineering, Vol 6, 1995, pp. 87-95. 

19. Rice, J. R., Tsompanopoulou P. and Vavalis, E. A., 
"Interface Relaxation Methods for Elliptic Differential 
Equations,” Applied Numerical Mathematics, Vol. 32, 
1999, pp. 219-245. 

20. Mu, M., “Solving composite problems with interface 
relaxation,” Siam J. Sci. Comput., Vol. 20, No. 4, 1999, 
pp. 1394-1416. 

 
 


