
計算数理工学論文集　 Vol.1 (2001 年 7 月), 論文 No.01 070612 JASCOME

Conditional stability in determining a periodic structure in

a lossy medium and the Tikhonov regularization

G. Bruckner1, J. Cheng2, M. Yamamoto3

1Weierstrass Institute for Applied Analysis and Stochastics

(Mohrenstrasse 39 D-10117 Berlin Germany)

2Department of Mathematics, Fudan University

(Shanghai 200433 China)

3Department of Mathematical Sciences, The University of Tokyo

(Komaba 3-8-1 Meguro Tokyo 153-8914 Japan)

In this paper, we show conditional stability for an inverse problem of determin-

ing a periodic structure in diffractive optics from near field observations in a lossy

medium, when we assume perfect reflection on the structure. Next we apply the

conditional stability to obtain a convergence rate of regularized solutions by the

Tikhonov regularization.
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1 Formulation of the prob-

lem

　 We consider the scattering by the per-

fectly reflecting periodic structure in two di-

mensions. According to Bao(2), Bao et al.(3),

Hettlich and Kirsch(9), Petit(12), we can for-

mulate the problem as follows. Let f ∈ C2(R)

be 2π-periodic, f(x) < 0 for x ∈ R and on

{(x, y); y = f(x), x ∈ R}, the perfect reflec-

tion condition is imposed. We set

Ωf = {(x, y); y > f(x), x ∈ R}. (1)

Then we regard ∂Ωf = {(x, y); y = f(x), x ∈
R} as a periodic interface which we should de-

termine by scattering data. For this, we intro-

duce an incident field uI(x, y; k) given by

uI(x, y; k) = exp{ik(x sin θ − y cos θ)}. (2)



Here i =
√−1, and k = �1+i�2 with �1, �2 ∈ R,

is a wave number. Throughout this paper, we

assume

0 < |θ| < π
2

(3)

and

�21 − �22 ≤ 0. (4)

The condition (4) implies that the medium

in Ωf is lossy. Then the resulting scattering

field uS(x, y; k) satisfies the Helmholtz equa-

tion with the perfect reflection boundary con-

dition on ∂Ωf and the boundedness condition

at infinity:

∆uS + k2uS = 0 in Ωf . (5)

uS + uI = 0 on ∂Ωf . (6)

uS is bounded as y → ∞. (7)

Moreover, according to the form (2) of the

incident wave, we pose the (k sin θ)-quasi-

periodicity condition for uS:

uS(x+ 2π, y; k) = exp(2πik sin θ)uS(x, y; k)

(8)

for all (x, y) ∈ R2 (see e.g., Bao(2), Bao et

al.(3), Hettlich and Kirsch(9)). For the unique

existence of uS(f) = uS(f)(x, y; k) satisfying

(5) - (8), see Kirsch(10)−(11), Wilcox(14), for

example. Then we will discuss

Inverse Problem of Diffractive Optics.

Determine y = f(x), x ∈ R from the mea-

surements uS(f)(x, 0; k), x ∈ (0, 2π), where

uS satisfies (5) - (8).

For this inverse problem, from the math-

ematical point of view, the first issue is the

uniqueness. That is, we should prove that the

correspondence f ↔ uS(f)(x, 0; k) is one to

one. For a lossy medium (i.e., Imk > 0), see

Bao(2), and for the case of k ∈ R, see Hettlich

and Kirsch(9). We further refer to Ammari(1)

and Bruckner et al.(5) for other uniqueness re-

sults in our inverse problem.

Since real observation data are polluted

with errors and in numerical computations,

errors by discretization must be taken into

consideration, the stability issue for our in-

verse problem is the next important theo-

retical subject. That is, we should clarify

whether two periodic structures f and g are

not far from each other, when the difference

uS(f)(x, 0; k)−uS(g)(x, 0; k) is small. In spite

of the significance of the stability, there are

very few papers on such a subject. Only

Bao and Friedman(4) proved stability around a

fixed f0 which is of local character in the sense

that f and g are restricted within a specially

parametrized class. To the authors’ knowl-

edge, however, there are no works concerning

the stability without such a specialized classs

except for Bruckner et al.(6) where the medium

is assumed to be non-lossy and k is not very

big (i.e., 0 < k < 1
2π ). The first purpose of

this paper is to show similar stability in the

lossy case (4).
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We reformulate the problem. By the

(k sin θ)-quasi-periodicity, setting

u(f) = u(f)(x, y; k)

= uI(x, y; k) + uS(f)(x, y; k), (9)

we rewrite (5) - (8) in terms of the total field

u:

∆u+ k2u = 0 in Ωf (10)

u = 0 on ∂Ωf (11)

u(x+ 2π, y; k) = exp(2πik sin θ)u(x, y; k).

(12)

u− uI is bounded as y −→ ∞. (13)

Since k is so fixed that (4) is true, we simply

write u(f)(x, y) in place of u(f)(x, y; k). Then

our inverse problem is equivalent to: deter-

mine y = f(x), x ∈ R from the measurements

u(f)(x, 0), x ∈ (0, 2π),

where u satisfies (10) - (13).

2 Conditional stability

For the stability, it is mathematically nec-

essary to assume that unknown structures

should satisfy some boundedness condition.

Otherwise we can construct an example break-

ing the stability, as is suggested in Cheng et

al.(7). Also from a practical point of view, it is

often reasonable to introduce some bounded-

ness on the lengths, the curvatures, etc. of the

unknown structure. Under suitable bounded-

ness assumptions, we can restore the stability

in our inverse problem which is called condi-

tional stability.

In order to state our conditional stability,

we need to define such boundedness for a set

of unknowns. For fixed positive constantsM0,

M , κ, and a0, a such that 0 < M ≤ a0 ≤ a
and 0 < κ < 1, we set

F = {f ∈ C3+κ(R); ‖f‖C3+κ[0,2π] ≤M0,

f is (2π)-periodic,

djf

dxj
(0) =

djf

dxj
(2π), j = 0, 1, 2, 3,

f(0) = f(2π) = −a0,
−a ≤ f(x) ≤ −M, 0 ≤ x ≤ 2π}

as an admissible set of unknown structures.

Here and henceforth let

‖f‖C3+κ[0,2π] =
3∑

j=0

max
0≤x≤2π

∣∣∣∣∣d
jf

dxj
(x)

∣∣∣∣∣
+ sup

0≤x,x′≤2π,x �=x′

∣∣∣d3
f

dx3
(x)− d3

f

dx3
(x′)

∣∣∣
|x− x′|κ .

In other words, F has a uniform bound in

C3+κ[0, 2π]. We recall

Ωf = {(x, y); y > f(x), x ∈ R}

for f ∈ F .
For fj ∈ F , j = 1, 2, let us consider

∆u+ k2u = 0 in Ωfj

u = 0 on ∂Ωfj
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and let us assume that

u is (k sin θ)-quasi-periodic, i.e.,

u(x+ 2π, y) = exp(2πik sin θ)u(x, y)

and

u− uI is bounded as y → ∞.

We are ready to state our main result on the

conditional stability in determining f1, f2 ∈ F :
Theorem 1. We assume (4). Then there ex-

ists a constant C = C(k, θ, F ) > 0 such that

max
0≤x≤2π

|f1(x)− f2(x)|

≤ C∣∣∣log ∣∣∣log 1
‖(u(f1)−u(f2))(·,0)‖H1(0,2π)

∣∣∣∣∣∣
provided that f1, f2 ∈ F .
Here and henceforth we set

‖(u(f1)− u(f2))(·, 0)‖H1(0,2π)

=

(∫ 2π

0

{
|(u(f1)− u(f2))(x, 0)|2

+
∣∣∣∣ ∂∂x(u(f1)− u(f2))(x, 0)

∣∣∣∣
2
}
dx

) 1
2

.

Our conditional stability is doubly logarith-

mic and is rather weak. However, this kind

of weak conditional stability is quite com-

mon in determining interfaces (e.g., Cheng et

al.(7), Rondi(13)), which reflects the severe ill-

posedness (i.e., very strong instability) in our

inverse problem. It is extremely difficult to

improve the conditional stability.

The proof of Theorem 1 is very technical and

can be carried out very similarly to Bruckner

et al.(6) except that we have to apply the maxi-

mum principle for the Helmholtz equation: let

k ∈ C satisfy (4) and let u ∈ C2(D) ∩ C(D)

satisfy ∆u+ k2u = 0 in D, where D ⊂ R2 is a

bounded domain. Then

max
(x,y)∈D

|u(x, y)| = max
(x,y)∈∂D

|u(x, y)|. (14)

Here we note that u is complex-valued. For the

completeness, we will prove (14) in Appendix.

3 Tikhonov regularization

The conditional stability is very helpful for

guaranteeing convergence rates of Tikhonov’s

regularized solutions and, on the basis of The-

orem 1, we apply Cheng and Yamamoto(8) to

establish a convergence rate of the Tikhonov

regularized solutions with an adequate choice

of regularizing parameters.

Let us consider the following functional

which contains a positive parameter α:

G(f) = ‖u(f )(·, 0)− uδ‖2
L2(0,2π)

+α‖f‖2
H4(0,2π)

where uδ is the measured data which con-

tains some error. We assume to know its er-

ror bound. That is, for the exact solution

u(f0)(·, 0), let us assume that

‖u(f0)(·, 0)− uδ‖L2(0,2π) < δ,
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where δ > 0 is an a priori error bound.

Here and henceforth, we set

‖f‖H4(0,2π) =


 4∑

j=0

∥∥∥∥djfdxj

∥∥∥∥
2

L2(0,2π)




1
2

,

‖f‖L2(0,2π) =
(∫ 2π

0

|f(x)|2dx
) 1

2

and H4(0, 2π) = {f ; ‖f‖H4(0,2π) <∞}.
We suppose that the exact solution f0 to

the inverse problem is smooth, that is, f0 ∈
H4(0, 2π). As approximations to f0, we take

a quasi-minimizer of the functional G. Then,

in order to obtain a reasonable convergence

rate of the approximations to f0, an a priori

choice strategy for α is essential. Combining

Theorem 1 with Cheng and Yamamoto(8), we

can readily prove

Theorem 2. Suppose that α = cδ and f δ
α ∈

H4(0, 2π) satisfies

G(fδ
α) ≤ inf

f∈H4(0,2π)
G(f) + δ2.

Here c > 0 is a constant which is independent

of δ. Then we have

max
0≤x≤2π

|f δ
α(x)− f0(x)| ≤

C∣∣log ∣∣log 1
δ

∣∣∣∣
where C > 0 is a positive constant which de-

pends on f0.

4 Conclusions

(1) In the case of lossy media, we show a con-

ditional stability result for the inverse optics

problem and the stability rate is doubly loga-

rithmic.

(2) With an adequate choice of the Tikhonov

regularizing parameters, we can gain the con-

vergence of the regularized solutions towards

the exact solution and the convergence rate

is same as in the conditional stability. The

choice of α should be proportional to δ, the

noise level.
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Appendix. Proof of (14). We set k2 =

µ1 + iµ2 with µ1, µ2 ∈ R and u = v + iw

with real-valued functions v, w. Then from the

Helmholtz equation, we have ∆v+µ1v−µ2w =

0 and ∆w + µ1w + µ2v = 0 in D. We set

W = v2 + w2. Since (4) implies that µ1 ≤ 0,

we can drectly see that

∆W = 2(|∇v|2 + |∇w|2) + 2v∆v + 2w∆w

≥ 2v(−µ1v + µ2w) + 2w(−µ1w − µ2v)

≥ −2µ1W ≥ 0

in D. Consequently the maximum principle

implies that supDW = sup∂DW . Thus the

proof of (14) is complete.
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