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ELASTO-PLASTIC FRACTURE MECHANICS PROBLEMS

Wael M. Elleithy*, Husain J. Al-Gahtani**, Masataka Tanaka*

*Faculty of Engineering, Shinshu University, Nagano 380-8553, Japan Email: elleithy@homer.shinshu-u.ac.jp

**Civil Engineering Department, KFUPM, Dhahran 31261, Saudi Arabia Email: hqahtani@kfupm.edu.sa

In this paper we extend the application of the sequential Dirichlet-Neumann iterative boundary element-
finite element coupling method to elasto-plasticity. The successive computation of the displacements and
forces/tractions on the interface of the finite element and boundary element sub-domains is performed
through an iterative procedure. The procedure is implemented in a computer program and is tested through
linear elastic fracture mechanics and elasto-plastic fracture mechanics problems.
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1 Introduction

For certain categories of problems, neither the boundary
element method (BEM) nor the finite element method
(FEM) is best suited and it is natural to attempt to couple
these two methods in an effort to create a finite element-
boundary element method (FEBEM) that combines all their
advantages and reduces their disadvantages.

Unfortunately, the systems of equations, produced by the
two methods, are expressed in terms of different variables
and cannot be linked as they stand. The coupling of the two
methods has been a topic of great interest for more than two
decades. The conventional coupling methods [1-17] employ
an entire unified equation for the whole domain, by
combining the discretized equations for the BEM and FEM
sub-domains. The algorithm for constructing an entire
equation is highly complicated when compared with that for
each single equation. In order to overcome the stated
inconvenience, iterative domain decomposition coupling
approaches were developed [18-24], where there is a no
need to combine the coefficient matrix for the FEM and
BEM sub-domains. A second advantage is that different
formulation of the FEM and BEM can be adopted as base
programs for coupling the computer codes only. In these
coupling algorithms, separate computing for each sub-
domain and successive renewal of the variables on the
interface of the both sub-domains are performed to reach the
final convergence. Gerstle et al. [18] and Perera et al. [19]
presented solution schemes, which utilize the conjugate
gradient method and the Schur complement, respectively,
for the renewal of the unknowns at the interface. Kamiya et
al. [20] employed the renewal schemes known as Schwarz
Neumann-Neumann and Schwarz Dirichlet-Neumann.
Kamiya and Iwase [21] introduced an iterative analysis
using conjugate gradient and condensation. Lin et al. [22],
and Feng and Owen [23] presented a method which is
considered as a sequential form of the Schwarz Dirichlet-
Neumann method. Elleithy and Al-Gahtani [24] presented
an overlapping iterative domain decomposition method for

coupling of the FEM and BEM. The domain of the original
problem is subdivided into a FEM sub-domain, a BEM sub-
domain, and a common region, which is modeled by both
methods.

The above iterative coupling methods, however, are only
limited to linear problems. The objective of this paper is to
extend the application of the sequential Schwarz Dirichlet-
Neumann iterative coupling method to elasto-plasticity.
Applications in fracture mechanics are considered. The
conventional FEM computations are also performed, and a
critical comparison of the results is made.

2 Iterative Coupling Method in Elasto-
Plasticity

In this section we consider the extension of the sequential
Schwarz Dirichlet-Neumann iterative coupling method
presented by Lin et al. [22], and Feng and Owen [23] to
elasto-plasticity. As any other coupling procedure, the
starting point is to decompose the domain of the original

problem W  into two sub-domains BW  and FW . Now, let
us define the following vectors (Figure 1):

{ }Bu : displacement in the BEM sub-domain,

{ }IBu : displacement on the BEM/FEM interface (but it is

approached from the BEM sub-domain),

{ }BBu : displacement in the BEM sub-domain except

{ }IBu ,

{ } { }TI
B

B
BB u,uu =

{ }Fu : displacement in the FEM sub-domain,

{ }IFu : displacement on the BEM/FEM interface

(approached from the FEM sub-domain), and
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Figure 1:  Domain Decomposition

{ }FFu : displacement in the FEM sub-domain except { }IFu ,

{ } { }TI
F

F
FF u,uu =

Similarly, one can denote the BEM traction by B
Bt  and

I
Bt  and FEM force vectors by F

Ff  and I
Ff .

Disregarding body forces, the assembled boundary
element equations for an elastic region are given by:
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For an elasto-plastic analysis, the incremental form of
the FEM equations can be written as:
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It should be noted that for each load increment, Equations
(2) are nonlinear and therefore are solved iteratively. At the
interface, the compatibility and equilibrium conditions
should be satisfied, i.e.,

{ } { } IGŒ= I
F

I
B uu (3)

{ } [ ]{ } IGŒ=+ 0I
B

I
F tMf (4)

where, [ ]M  is the converting matrix due to the weighing of

the boundary tractions by the interpolation functions on the
interface.

The iterative coupling method can be summarized as
follows:



1. Given the initial guess { } { }uuIB,0 = .

2. For ,........2,1,0=n , do

Solve Equation (1) and get { }I nB,t
Solve Equation (4) and obtain { }I nF,f

For .......,2,1=i , specified number of increments

Solve Equation (2) for { }
n

I
iF,uD

Apply { } { } { }
nnn

I
iF,

I
iF,

I
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Obtain { }I
nF ,u
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I
nB,

I
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where a  is a relaxation parameter
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    (given tolerance)

3. Applications

A coupled Fortran computer program has been developed
for the iterative FEBEM elasto-plastic analysis using the
ideas presented in Section 2. Two simple numerical
examples in linear elastic fracture mechanics (LEFM) and
elasto-plastic fracture mechanics (EPFM) are considered.
The conventional FEM computations are also performed,
and a critical comparison of the results is made.

It should be noted that for the LEFM example in Section 3.1,
the BEM is expected to give more accurate results than the
FEM, as the BEM accurately capture the singular behavior
at the crack tip. However, we conducted the analysis using
the FEBEM and the FEM for the LEFM problem to account
for cases where the rest of the domain may be non-
homogenous or non-linearity is present. The reason behind
choosing this simple LEFM example is to compare the
results with the available exact solution.

3.1.  Linear Fracture Mechanics Example

Consider a square plate, with a central crack, subjected to a
uniform applied traction on the opposite ends of the plate
(Figure 2-a). This produces a Mode I type of crack growth.
The crack is assumed to be 10 units long with a plate width
of 20 units. Young's modulus is assumed to be 0.3x105 units
and a Poisson's ratio 3.0=n . A uniform traction of 1 unit
is applied at opposite ends of the plate. Due to the
symmetrical nature of the problem, only a quarter of the
plate is modeled. The discretization of the linear FEBEM
model is shown in Figure 2-b. The problem is modeled with
42 non-uniform linear boundary elements and 30 finite
linear quadrilateral elements. The same problem is solved
using the FEM with 682 linear quadrilateral elements. The
stress intensity factors using the FEBEM and FEM are
shown in Table 1. Notice that the FEBEM gives a stress

intensity factor that is only 1.9% different than the analytical
solution, while the FEM gives an error of 5.9%. The
difference in CPU time recorded for both methods is
insignificant and therefore a comparison of the results is not
given here.

3.2.  Non-Linear Fracture Mechanics Example

Coupling the FEM and BEM may be most efficient for
EPFM problems as the material is plastic around the crack
and the FEM is more efficient in modeling the nonlinear
regions. The remaining linear elastic region can be modeled
by the BEM.

The geometry and loading assumed in this example is
shown in Figure 3. Von Mises yield criterion is assumed and
the material properties employed are as follows: Young's
modulus E=2.06x105 units, Poisson's ratio 3.0=n , tensile

yield stress ys =480 units, and the tangent modulus for

plasticity H ¢=2.06x103 units. Due to symmetry only one
quarter of the plate is modeled. The FEM and FEBEM
analysis are performed with the discretization shown in

Figure 4. Table 2 shows the computed remote stress os  vs.

load-point displacement od . The calculated yield zones are

also shown in Figure 5. The data in Table 2 and Figure 5
exhibit close agreement of results between the FEM and
FEBEM. Table 3 shows the CPU time required for the
analysis with the FEM and FEBEM. The Table shows a less
CPU time when the analysis is performed using the FEM.
The difference in CPU time increases as load increases.
Utilizing a parallel processing for the iterative method is
expected to result in a reduction of the CPU time required
for analysis using FEBEM and it will be considered for
future research. However, an advantage of the FEBEM
which, cannot be seen from the results is the incredible
reduction of data preparation required for analysis as
compared to the FEM

4. Conclusions

The extension of the iterative coupling of FEM and BEM to
elasto-plasticity is investigated in this paper. Beside the
convenience of less input data, the iterative FEBEM has the
advantage of preserving the identity of both FEM and BEM
and therefore different formulation can be adopted for each
method without changing the overall structure of the
computer codes. The numerical examples show that the
iterative FEBEM, in general, yields more accurate results as
compared to the FEM.
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Figure 2:   (a) Plate with a Central Crack   (b) FEBEM Discretization.

Table 1:   Stress Intensity Factors for a Cracked Plate.

Method Stress Intensity Factor % Error
Exact 4.71 -
FEM 4.28 5.9

FEBEM 4.62 1.9

Figure 3:  Geometry and Loading Condition for Elasto-Plastic Fracture Mechanics Example
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Figure 4:   Discretization for Elasto-Plastic Fracture Mechanics Example

Figure 5:   Yielded Zones for Elasto-Plastic Fracture
Mechanics Example

Table 2:   Remote Stress vs. Load-Point-Displacement for
Elasto-Plastic Fracture Mechanics Example

Wod

os  (units) FEM FEBEM

100 0.065 x10-2 0.065 x10-2

150 0.098 x10-2 0.096 x10-2

200 0.131 x10-2 0.130 x10-2

226 0.149 x10-2 0.146 x10-2

250 0.166 x10-2 0.162 x10-2

284 0.194 x10-2 0.192 x10-2

Table 3:  CPU Time for Elasto Plastic Fracture Mechanics
Example

CPU time (Sec.)

os FEM FEM/BEM

100 3 5
150 4 5
200 4 8
226 5 8
250 5 8
284 6 11
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