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The formulation of the time domain boundary element method for 3D anisotropic elastic solids is 
presented here. The fundamental solutions used are the ones developed by Wang and 
Achenbach [1] and are separated into static parts and dynamic parts. Radon transform and 
inverse Radon transform were used to derive the fundamental solutions. Thus, the solutions 
contain integrals over a unit sphere. For the static parts, these integrals are dealt with 
analytically with the help of integration by residues. However, the integrals in the dynamic 
parts can only be integrated numerically. Boundary integral equations also require the presence 
of spatial integrals and the proposed approach is to compute spatial integrals using Gaussian 
quadrature for triangular elements. But these integrals should be dealt with proper care 
because of the inherent singularities and other possible numerical problems. To check the 
validity of the codes, the fundamental solutions are compared to isotropic solutions. Additionally 
for the time convolution, approximating functions are needed to be chosen properly. 
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1. Introduction  (1) 

This document contains the details of the formulation of the 
time domain boundary element method for three dimensional 
anisotropic elastic solids. Furthermore, the method of tackling 
the numerically computations are added. Fundamentals 
solutions and the corresponding stress fields are very important 
in the implementation of the boundary element method (BEM). 
Wang and Achenbach [1] derived the fundamental solutions for 
generally anisotropic elastic solids and these are much more 
complex compared to their isotropic counterparts. In this paper, 
the numerical computation of the fundamental solutions is 
shown and these are validated with existing solutions. Then 
explicit integration schemes for the BEM code are developed. 
2. Problem statement 
Consider a three dimensional homogeneous and linearly 
anisotropic solid. The solid is modeled assuming an infinite solid 
with a cavity of arbitrary shape. Fig. 1 shows the model with an 
incident wave acting upon the solid. The equations of motion and 
the constitutive equations are written as follows, 
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 (2) 
where ui are the displacements, sji is the stress components, cijkl 
are the material properties, r is the material density and fi are 
the body forces. Throughout this paper, a comma after a 
quantity denotes partial derivative with respect to the spatial 
variables while a dot appearing on the top of a quantity denotes 
partial derivative with respect to time. The summation 
convention rule over repeated indices is used. Lower case roman 
suffixes take values of 1, 2, and 3. 
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 Substituting eq.(2) into eq. (1) and assuming no body forces, 
the equations of motion are now in terms of the displacement 
components 

{ }2( ) ( , ) 0ij ij t ju tρδΓ − ∂ =x∂  (3) 

where  

( )ij ijkl k lcΓ = ∂∂ ∂  (4) 

are the terms of the Cristoffel tensor and ¶k represent partial 
derivative with respect to xk. Zero initial conditions are assumed.  
3. Boundary integral equations 
     The boundary integral equations for the displacement 
components can be written as: 

[ ]

[ ]

( , ) , * ( , )

( , )             
( ), ( ), * ( , ) ( ) ( , )    

0           otherwise

in
k ik iS

k

ik i x ik iS

u t g t t t ds

u t y D
h t u t ds u t

+

∈⎧
⎪− = Ω⎨
⎪
⎩

∫

∫

xy x - y x

y
x - y e x x y y y S∈

 (5) 

where x and y are the source and the observation points, gik are 
the displacement fundamental solutions and hik are the traction 
fundamental solutions, ui are the displacements and ti are the 
tractions, Wik is the free term, S  is the boundary of a scatterer 
and “in” denotes incident wave. * denotes the time convolution. 
D denotes the domain. 
4. Fundamental solutions 

The boundary integral equations of eq.(5) require the 
fundamental solutions. If we consider a homogeneous anisotropic 
and linearly elastic solid in a 3D unbounded domain with fixed 
rectangular coordinate system, the fundamental solutions are 
described as the solutions of the following differential equations, 
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0
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and with initial conditions, 

( ), 0 forpkg t t= <  x  (7) 

where dik are the components of the Kronecker delta, d( ) is the 
delta function and r is the material density. Wang and 
Achenbach [1], using Radon transform, were able to derive 
expressions for the fundamental solutions in terms of integration 
over a unit sphere. The displacement fundamental solutions are 
given as 
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where the projectors, given in terms of the adjoints of 
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The fundamental solutions include integrations over a unit 
sphere (due to the inverse Radon transform). 
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the velocities of the material and n is a unit vector. Consider the 
time convolution of gpk and of any function f(t), using some 
manipulations (integration by parts and transfer of derivatives), 
the fundamental solutions can be separated into static (S) and 
dynamic (R) parts as  

lc
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The static singular parts of the displacement fundamental 
solutions are transformed into explicit expressions by using the 
residue theorem. The analytical integration by residues is done 
by first introducing the coordinates shown in Fig. 2a and using 
these coordinates eq. (10) can be transformed and integrated as   
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where r=|x|, Im means imaginary parts, q and p are 
orthonormal vectors in the plane normal to e shown in Fig. 2b. , 

and D( n) is the determinant of  2
pmkq m q l pkc n n cρ δ⎡ ⎤−⎣ ⎦ and zl  are 

the roots of the determinant equation. The integration for the 
dynamic parts cannot be calculated analytically. Again using 
coordinates of Fig. 2, eq. (11)  can be rewritten as 

Fig. 2 a.) Geometry of x, e, d and n in the fixed 
coordinates. b.) Geometry n in terms of p and q
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where Gaussian quadrature is used to calculate the integral over 
the unit sphere. Analytical integration is not possible here 
because projectors Plpk and velocities cl are dependent on n and 
thus on q and f. The presence of the absolute value of cosine is 
due to the integration over the surface of a unit sphere. 
Again reconsidering the boundary integral equations of eq. (5), 
traction fundamental terms are also needed. The traction 
fundamental solutions can be calculated by substituting eq. (8) 
into Hooke’s law. 
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where em are the components of the unit normal vector.  The 
convolution of h and f , after some manipulations, can be written 
as  
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Although eq. (16) is equivalent to the traction static parts, it will 
is not very useful for the boundary element formulation because 
it is not very easy to deal with derivatives of the delta function. 
Recall that the explicit forms of the displacement fundamental 
solutions are available in eq. (12). Taking advantage of this and 
substituting into Hooke’s Law, the static traction parts can be 
rewritten but again explicit expressions of these are quite 
complicated. However, developing a method where the integral 
kernel for h in eq. (5) is taken into account looks promising. The 
convolution of gpk,i  and any function f along a curve l [2,3]  can 
be used to simplify the kernel. Fig. 3 shows the diagram for the 
curve l, the field and source points, and the unit vectors needed 
for the calculation. Using Wang’s method [2], gSik,q can be 
written as: 
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                 Fig. 3. Geomety of (p,q,e) along curve l 

Following the steps for the displacement fundamental solutions, 
analytical solutions for V and W can be analytically calculated as  
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where . If a linear 
curve l is used, the function can be further simplified to 
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and with the given form, the integral along a line element can be 
easily (analytically) computed. 
For the dynamic traction parts, eq. (17) is used and can be 
calculated numerically using Gaussian quadrature and written 
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5. Implementation of the formulation 
In solving the boundary integral equation, the separated 

values of the fundamental solutions are used and can be 
rewritten in the following form: 
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The time stepping method is a process used to approximate the 
values at a finite number of times intervals. Thus, the boundary 
integral equation can then be approximated by linear algebraic 
system of equations which can be solved using numerical 
method. The proper selection of the shape functions could make 
the problem easier to deal with.  

1x 2x
3x

eG

qG yG
( )x l

( )x l d l+

l



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Triangular elements are chosen to discretize the surface or 
boundary. Fig. 4 shows a sample spherical cavity and is 
discretized using triangular elements. 
The variables or fields in the boundary are approximated as 
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where              are the spatial shape functions and 
are constants per element and             are the 
temporal shape functions. n denotes the element number 
while the capital N denotes the total number of elements. 
This is the same for k and K, denoting kth time and total 
time steps. The temporal shape functions are chosen 
carefully. Higher order temporal shape functions are 
used and the second derivative of the displacement 
temporal function as well as the first derivative of the 
traction temporal shape function should result to the 
Heaviside functions. This is needed to be done to make 
the kernels GR and HR simple. Therefore, quadratic 
displacement temporal shape functions are needed while 
linear traction temporal shape functions are required. 
Substitution of eq. (23) into eq. (22.b) leads to a system of linear 
equations 

, ; ; , ,

1 1 1

; ; , ,

1 1 1

QN N
m mQ in mQ S mn nQ R m n q nq
IK I K IK I IK I

n n q

QN N
S mn nQ R m n q nq
IK I IK I

n n q

U U G T G T

H U H U

= = =

= = =

⎛ ⎞
Ω = + + ⎜ ⎟

⎝ ⎠
⎛ ⎞

− − ⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑

 (24) 

where G and H are the kernels of the displacement fundamental 
solutions and the traction fundamental solutions, respectively. 
The boundary integral equations require the presence of spatial 
integrals. Special care is needed to properly compute the spatial 
integrals because of the presence of singularities inherent in the 
static parts and other possible numerical problems. The 
singularities occur if the source point is in the boundary element. 

To solve the kernels of eq. (24), different methods are to used.  
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 Fig. 5 Master element and the Gaussian 

quadrature points in a sample triangle.  
 
Displacement static parts nonsingular. For usual nonsingular 
spatial integrals or nonsingular GS, Gaussian quadrature for 
triangular elements is used except for the traction static parts. 
Fig. 5 shows the Gaussian quadrature points in a sample 
triangle. 

Fig. 4 Sample of sphere discretized using 
triangular elements with the crosses as the 
midpoint of the triangle 

Displacement static parts singular. For the singular integrals in 
GS, it can be noted in that for y inside the element, the 
fundamental solutions become a function of r. The term below is 
constant in terms of q. 
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Therefore the integrals are rewritten in polar coordinates and 
integrated analytically along the radius and numerically in 
terms of the angle as shown here. 

( )( )

( ) ( )
2 2

1 10

r f
rdr d f r d

r

θθ θ

θ θ

θ
θ θ θ

⎡ ⎤
=⎢ ⎥

⎣ ⎦
∫ ∫ ∫

( ) ( ),   n n
u tx xφ φ

( ) ( ),   k k
u tx xϕ ϕ

θ  (26) 

The triangle is first divided into three parts as shown in Fig. 6. 
Then each part is to be integrated analytically. The angles can be 
determined from the master element and subsequently used to 
all singular triangles.  
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Fig. 6 Division of the sample triangle for 
integration of singular parts. 

 
 
Traction static parts. For the traction static parts, the spatial 
integrals are rewritten in terms of line integrals and thus can be 
integrated analytically if the line or path is properly chosen [3]. 
Figure 7 shows the integration points and Simpson’s method is 



used for the integration. Other methods can be used to replace 
Simpson’s method and should still remain at the edges of 
triangle but the position can be change depending on the method 
used (i.e. Gaussian quadrature in 1-D). 
 
                 
 
 
 
 
 

For all other kernels (ie, GR and HR), Gaussian quadrature is 
used for the spatial integration. It should be noted that time 
convolutions are not needed here because it was reduced to 
derivatives with respect to time in eqns. (9) and (15). Thus, the 
calculation of the kernels became more difficult (as compared to 
its 2D counterpart where delta function was used extensively). 
The presence of  and  in the 
kernels complicates things. But with quadratic yu and linear yt, 
these derivatives are constant and makes it easier to solve the 
kernels. 

( )( )1 n xlu t c−− ⋅�� ( )( )1 n xlt t c−− ⋅�

6. Numerical results 
   The static parts are compared to the isotropic 
formulation by using an isotropic solid having 
wave-speed quotient of cL/cT=2.  Table 1 gives the 
normalized static fundamental displacements as 
calculated for the given field point and the source point is 
at the origin. The values for the displacements are 
compared and show good agreement for the given 
quantities.  
 
 
 
 
 
 
 
 
 
 
Fig. 8. Geometry of the point load in an unbounded solid. 
   
To validate the dynamic parts, time displacement g33(x,t) are 
calculated using eq.(9). These are computed for a time 
dependence of a point load shown in Fig. 8 with equation given as  

( ) ( ) ( )2 1 22 3
44 with  f e H c t aττ τ τ τ ρ−= =  (27) 

where a=1, and solutions are evaluated at t =5.0 and are plotted 
along radial lines as shown in Fig. 9 . Numerical solutions for an 
isotropic solid and ice are also shown. Ice is a transversely 
isotropic solid and the axis of symmetry is taken as x3. The 

nonzero constants are c11=c22, c33, c13=c23, c12, c44=c55, 
c66=1/2(c11-c12). For ice, c11=1.38, c33=1.50, c12=0.71, c13=0.58, 
c44=0.32. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1.   Normalized static fundamental displacements 
calculated with isotropic formulation and present 
formulation 

Isotropic 
formulation 

Present 
formulation(x,y,z) 

g33 g33 
(0.001, 0.0, 0.0) 6.6290395 6.6267620 

(0.01, 2.25, 0.63) 0.0029407 0.0029392 
(0.02, 4.75, 1.33) 0.0013930 0.0013923 Fig. 7 Integration points for the traction static parts.. 
(0.022, 5.25,1.47) 0.0012603 0.0012597 
(0.035, 8.5, 2.38) 0.0007784 0.0007780 

(0.05, 12.25, 3.43) 0.0005401 0.0005399 

In Fig. 9 where q=0, computed values for an isotropic solid are 
compared to Wang’s paper [1] and in turn where compared to 
analytical solutions. Different values of q are plotted along radial 
lines from the point of application of the load which is at the 
origin.  Figs. 10 show the values of the ones for ice.  
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7. Summary  
       Numerical calculation of the explicit 3D time 
domain fundamental solutions are presented here and 
the algorithms are given in a way easily incorporated 
into the boundary element code. The singular parts for 
displacements are evaluated analytically. Similarly the 
singular parts for the traction are also evaluated 
analytically but it is calculated as a line integral over a 
chosen curve. This plays well into the BEM because the 
method is integrated over a surface (for 3D) and thus line 
integrals can be incorporated here. The dynamic parts 
for both the displacements and tractions are to be 
calculated using numerical methods. One concern for the 
dynamic parts is the determination of projectors and the 
velocities. Possible solution is the use of cubic spline for 
three inputs. Further application of this numerical 
method will be investigated. The formulation of the 
boundary element method is also presented here with the 
triangular constant elements chosen to make the 
calculation simpler. Proposed numerical calculations are 
also shown and analyzed. Currently, the development of 
the BEM code is being written. 
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