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This paper describes an estimation technique for recovering internal profiles of stress cor-

rosion cracking (SCC) related to eddy current testing in the sample material. First, math-

ematical description of eddy current model is formulated by a variational form defined in

appropriate Hilbert spaces. Secondly, taking into account that SCC can be described by

inhomogeneous conductivities in the sample material, the admissible parameter class is

reconstructed by the set of electrical conductivities corresponding to the set of sub-regions

in the suspect region. The method for recovering is directed to electromagnetic inverse

problem by characterizing each sub-region of the SCC decomposition using its electrical

conductivity, while an estimation technique for inverse analysis is proposed by a hybrid

use of the forward analysis and inspection data. Finally, the feasibility and applicability

of the proposed method are demonstrated through the computational experiments.
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1. Introduction

Recently, due to the aged deterioration by small cracks and

corrosion embedded in the material system of power plants,

interest has grown for structural integrity of nuclear power

plants. Inverse analysis on quantitative nondestructive eval-

uation is a key technology for safety and reassurance of the

plants.

An electromagnetic nondestructive evaluation is to find a

material flaw or a degradation level by evaluating structure-

sensitive electromagnetic properties from measurement data

related to eddy current testing (ECT). In this paper, we con-

sider a domain identification problem associated with a stress

corrosion cracking based on an eddy current model(2)(4) to

recover internal profiles of SCC arising in ECT. In Section

2, mathematical description of eddy current model is formu-

lated by a variational form defined in appropriate Hilbert

spaces related to a forward analysis. In Section 3, taking
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into account that SCC can be described by inhomogeneous

conductivities in the sample material, the admissible param-

eter class is reconstructed by the set of electrical conduc-

tivities corresponding to the set of sub-regions in the sus-

pect region. Since the method for recovering is directed to

electromagnetic inverse problem by characterizing each sub-

region of the SCC decomposition using its electrical conduc-

tivity, then in Section 4, we discuss a estimation technique

for inverse analysis to recover internal profiles of SCC, formu-

lated by a hybrid use of the forward analysis and inspection

data. Finally, the feasibility and applicability of the pro-

posed method are demonstrated through the computational

experiments.

2. Eddy current model

Let us assume that Ω be a bounded region in R3 with

a Lipschitz-continuous boundary Γ. We also suppose that

a conducting and nonmagnetic material Ωc is a sub-region

of Ω. Then we set an air region as Ωair = Ω − Ωc (Fig.
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Fig. 1 Virtual box and sample material.

1) with the Lipscitz-continuous interface ΓI . We introduce

the magnetic vector potential A = (A1, A2, A3) in Ω and

the electrical scaler potential φ in Ωc. By considering the

Coulomb gauge condition (∇ ·A = 0), a three-dimensional

eddy current problem in the conducting material Ωc is gov-

erned by the equations:

− 1

µ0
∇2A = −√−1σcωA− σc∇φ, (1)

∇ · (√−1σcωA + σc∇φ) = 0, in Ωc, (2)

where ω, µ0, and σc denote an exciting angular frequency, a

magnetic permeability of air, and an electrical conductivity

of the sample material, respectively. The governing equation

in the air region Ωair is expressed by:

− 1

µ0
∇2A = χsJs, (3)

with Js denotes the intensity of the exciting coil probe, while

on the boundary Γ, we can impose the condition

A = 0, on Γ, (4)

and on the interface ΓI , we also impose the conditions

A|Ωc
= A|Ωair

, on ΓI , (5)

∇A · n|Ωc
= ∇A · n|Ωair

, on ΓI , (6)
(√−1σcωA + σc∇φ

) · n∣∣
Ωc

= 0, on ΓI . (7)

Thus the eddy current density Je in the conducting material

Ωc can be evaluated by

Je = −√−1σcωA− σc∇φ. (8)

Furthermore, we consider strategies for measurements of ECT

signal made by means of transmitter-receiver coil pairs (See

Kojima(2)(4)). Then, the observation by receiver coil can be

represented by

Zxp(ω,Js) = −√−1Nω

∮

C(xp)

A · dl, (9)

with N and C(xp)(⊂ Ωair) denote the number of coil turns

and the center coordinate of the receiver coil, respectively.

In order to set up the computational schemes for the so-

lution of the problems (1-7) using a finite element method

which involves the integral equations, then in the sequel we

introduce Hilbert spaces:

H := ((L2(Ω))3 × L2(Ωc))× ((L2(Ω))3 × L2(Ωc)),

V := ((H1
0 (Ω))3 ×H1(Ωc))× ((H1

0 (Ω))3 ×H1(Ωc)),

where H1
0 (Ω) = {ϕ ∈ H1(Ω) | ϕ = 0 on Γ}.

We then define u :=
{
(AR, φR), (AI , φI)

} ∈ V, and v :={
(vR, ψR), (vI , ψI)

} ∈ V, with vR = (vR
1 , v

R
2 , v

R
3 ) and vI =

(vI
1 , v

I
2 , v

I
3). Thus, for any u,v ∈ V, the bilinear form on

V × V can be defined as

αω(u, v) :=
1

µ0

3∑
i=1

∫

Ω

(
∇AR

i · ∇vR
i +∇AI

i · ∇vI
i

)
dx

+

∫

Ωc

(
∇φR · σc∇ψR +∇φI · σc∇ψI

)
dx

+ω

∫

Ωc

σc

(
AR · vI −AI · vR

)
dx

+

∫

Ωc

σc

(
∇φR · vR +∇φI · vI

)
dx

+ω

∫

Ωc

σc

(
AR · ∇ψI −AI · ∇ψR

)
dx (10)

and the linear form on H can be defined by

βJs(v) =

∫

C(xp)

χsJs · vRdx. (11)

Applying the set of alternating currents Js ∈ (L2(Ω))3 and

assuming that the angular frequency ω is properly chosen

such that 0 < ω ≤ ω0 <∞ together with the set of electrical

conductivities

{
σc ∈W 0

∞(Ωc)
∣∣ 0 < σ ≤ σc, in Ωc

}
,

we can find the set of a magnetic vector potential A and

an electrical scalar potential φ, which is a unique solution

u(ω,Js) = (A, φ) ∈ V of the system (Eqs. (10) and (11))

αω(u,v) = βJs(v), for v ∈ H. (12)

Let us suppose that l = {1, 2, ..., L} be the index of coil

positions. Relating to the above formulation, then the mea-

surements model (9) can be reformulated as:

ZL(ω,Js) =
{
Zxl

p
(ω,Js)

}L

l=1
=

{
Nω

∮

C(xl
p)

AI · dl,

−Nω
∮

C(xl
p)

AR · dl}L

l=1
, (13)

where AR = (AR
1 , A

R
2 , A

R
3 ) and AI = (AI

1, A
I
2, A

I
3) and with

AR
j = µ0

∫

Ωc

uR J l
(s)jdx, AI

j = µ0

∫

Ωc

uI J l
(s)jdx, (14)



j = 1, 2, 3 and where C(xl
p)(⊂ Ωair) and u = (A, φ) with

A = (AR,AI), denote the center coordinate of the receiver

coil and the solution of the problem (12), respectively.

3. Admissible parameter class

Our problem here is to recover the internal profiles of

SCC as shown in Fig. 2. The method for recovering is di-

rected to electromagnetic inverse problem by characterizing

each sub-region of the SCC decomposition using its electri-

cal conductivity(5). For this purpose, we suppose that a

conducting material Ωc is decompose into sub-regions ΩSCC

and Ωc−ΩSCC . And then a sub-region ΩSCC is decomposed

into M sub-regions Ωk
SCC , k = 1, 2, . . . ,M . We also assume

that the electrical conductivity for each sub-region Ωk
SCC is

given by a constant σk. Therefore, the electrical conductiv-

ity σc for each sub-region Ωk
SCC and a sub-region Ωc−ΩSCC

is then defined by

σk
c (x) :=

{
σ0, for x ∈ Ωc − ΩSCC ,

σk, for x ∈ Ωk
SCC , k = 1, 2, · · · ,M,

where {σk}M
k=1 belong to the admissible parameter class

QM = {{σk}M
k=1| 0 < σ ≤ σk ≤ σ0}

and where σ0 = σo(x) is the nominal value of sample mate-

rial.

Fig. 2 Crack decompositions.

In order to estimate the recovering internal profiles of SCC

by the set of its electrical conductivity corresponding to the

set of its sub-region, we construct a parametrized profile SCC

function by the set of electrical conductivities q = {σi}M
i=1

defined by

γ(x) =

M∑
i=1

σihi(x), (15)

where hi(x) is the characterized function given by

hi(x) :=

{
1, for x ∈ Ωk

SCC , i = k,

0, otherwise.
(16)

Hence, together with the set of applied alternating cur-

rents Js ∈ (L2(Ω))3 and the set of the electrical conductivi-

ties (σ0, {σk}M
k=1) ∈ R+ ×QM , then for a fixed angular fre-

quency ω ∈ R+, there exists a unique solution u(ω,Js) ∈ V

of

αω((σ0, {σk}M
k=1);u,v) = βJs(v), for v ∈ H. (17)

The observation model associated with (13) can be rede-

fined by:

ZL(q, ω,Js) =
{
Zxl

p
(q, ω,Jl

s)
}L

l=1
. (18)

Finally, our inverse problem to recover internal profile of

SCC is stated as follows. Given the observed data ZL
d =

{Zd(ω,Jl
s)}L

l=1, then find the optimal solution q = q? of

F(q?) = min
q∈QM

1

2

L∑
i=1

∣∣∣Zxl
p
(q, ω,Jl

s)−Zd(ω,Jl
s)

∣∣∣
2

(19)

subject to the systems (17) and (18).

4. Computational procedure

Our computational procedure is based on the use of finite

element Galerkin approach in context of the bilinear form

(10). To this end, we consider the set {ψN
i }N

i=1 is the set

of finite basis functions in VN and u is the solution of the

system (17) related to the systems (1)-(7). Then the approx-

imated solution uN of u can be defined by

uN =

4N∑
i=1

ζN
i ψN

i ,

with the coefficient ζN = {ζN
i }4N

i=1 is chosen such that the

systems (1)-(7) can be approximated by solving the system

FN (q)ζN = fN , (20)

where

[FN (q)]ij := αω(q)(ψN
i ,ψ

N
j )

and

[fN ]j := βJs(ψN
j ), (21)

i, j = 1, 2, 3, . . . , 4N.

The corresponding approximate observation (18) can be

computed as

ZN
L (q, ω) =

{
Mlζ

N (q, ω,Jl
s)

}L

l=1
, (22)

with [Ml]i,j = [Ml]iψ
N
j , i = 1, 2, j = 1, . . . , 4N , and

[
[Ml]1ψ

N
j , [Ml]2ψ

N
j

]
:=

[
Nω

∮

C(xl
p)

ψ
(N)I
j dlk, −Nω

∮

C(xl
p)

ψ
(N)R
j dlk

]
,

k = 1, 2, 3, and l = 1, 2, 3, . . . , L and ψN
j = (ψ

(N)R
j ,ψ

(N)I
j ).

Finally, our computational algorithm is to find the param-

eter vector q = q? which minimizes the error function

F(q) =
1

2

L∑

l=1

|Mlζ
N (q, ω,Jl

s)−Zd(ω,Jl
s)|2 (23)



with respect to parameter q ∈ QM and subject to the sys-

tems (22) and (20). Thus, to solve the problem (23) which

minimizes the output least square error between the for-

ward problem (22) and (20) and the given simulated data

{Zd(ω,Jl
s)}L

l=1, we apply a numerical scheme of trust region

algorithm with the linearity constraints, a FORTRAN soft-

ware package ”OPT2” (Carter(6)).

5. Numerical experiments

In this section, we present the series of numerical experi-

ments based on the methodology described in the previous

section. In the experiments, the dimensions of the conduct-

ing material Ωc were taken as d1 × d2 × d3 (Fig. 3)

d1 = 17.0, d2 = 17.0, d3 = 8.0 [mm].

In order to solve the system (20), then the system model

Ωc in Fig.3 was discretized by a finite element method with

the number of finite elements and nodes were set as 17×17×
8 = 2312 elements and 2961 nodes, respectively.

Fig. 3 Characterization of crack parameters.
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Fig. 4 Simulation results of ECT signal with various fre-

quencies for forward problem.
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Fig.5 Simulation results of ECT signal with the frequencies

300[kHz] in (a) and 450[kHz] in (b) for forward problem.

The physical parameters are given by

σ0 = 1.39× 106[Sm−1] and µ0 = 4π × 10−7[Hm−1]

and the set of alternating currents and the number of obser-

vation points were taken as

Jl
s = 1.0[A], for l = 1, . . . , L,

L = 9.

Moreover, in our test examples, we use the crack mod-

eling as depicted in Fig.3, with the crack depth = 4[mm],

length = 9[mm] and width = 1[mm], located in the center

of the conducting material Ωc. By decomposing the crack

modeling into M=4 sub-crack regions, then the crack pa-

rameter in (15) can be preassigned as M = 4. Therefore, the

parametrized internal profile of SCC is then defined by

γ(x) =

4∑
i=1

σihi(x), (24)

with the lower and upper bounds for q = {σi}4i=1 are

1%× σ0 ≤ σi ≤ 90%× σ0, i = 1, 2, 3, 4.

Numerical experiments for the forward problems can be

obtained by solving the systems (20) and (22). In these

experiments, frequency is a very important factor since the

depth of penetration of eddy current Je will depend on the

skin depth δ calculated by

δ =
1√

πσcµ0f
. (25)

Fig.4 depicts the sensitivity of algorithm with respect to the

various frequencies conducted in the simulation, while Fig.5

depicts the sensitivity of algorithm with respect to the chosen

various set of electrical conductivities {σi} corresponding to

its sub-region Ωi
SCC .



Table 1 Estimated value using frequency f =

300.00[kHz].

True value = {σ1, σ2, σ3, σ4} = {5.0%,10.0%,15.0%,20.0%}
(×σ0)

Estimated value with Noise free , Iteration = 9

σ1 σ2 σ3 σ4

σi (×σ0) 5.4379% 8.7102% 11.5966% 15.4228%

Relative 8.7580 12.8980 22.6893 22.8860

error (%)

5% Noise, Iteration = 9

σi (×σ0) 5.6523% 8.5718% 11.4629% 15.2239%

Relative 13.0460 14.2820 23.5807 23.8805

error (%)

10% Noise , Iteration =9

σi (×σ0) 4.6333% 8.3878% 11.2513 % 15.3680 %

Relative 7.3340 16.1220 24.9913 23.1600

error (%)

15% Noise , Iteration = 9

σi (×σ0) 4.2988% 7.6970% 10.6797% 15.1726%

Relative 14.0240 23.0300 28.8020 24.1370

error (%)

Table 2 Estimated value using frequency f =

450.00[kHz].

True value = {σ1, σ2, σ3, σ4} = {5.0%,10.0%,15.0%,20.0%}
(×σ0)

Estimated value with Noise free , Iteration = 8

σ1 σ2 σ3 σ4

σi (×σ0) 5.5336% 8.9429% 11.4153% 15.2068%

Relative 8.672 10.5710 23.8980 23.9660

error (%)

5% Noise, Iteration = 8

σi (×σ0) 5.7894% 8.4939% 11.5267% 15.4135%

Relative 15.7880 15.0610 23.1553 22.9325

error (%)

10% Noise , Iteration =8

σi (×σ0) 4.5998% 9.0127% 12.3464 % 15.7283%

Relative 8.0040 9.8730 17.6907 21.3585

error (%)

15% Noise , Iteration = 8

σi (×σ0) 4.3913% 7.9831% 11.8344% 15.5147%

Relative 12.1740 20.1690 21.1104 22.4265

error (%)

Table 3 Estimated value using frequency f =

600.00[kHz].

True value = {σ1, σ2, σ3, σ4} = {5.0%,10.0%,15.0%,20.0%}
(×σ0)

Estimated value with Noise free , Iteration = 8

σ1 σ2 σ3 σ4

σi (×σ0) 4.7562% 9.6365% 12.3307% 15.5789%

Relative 4.8760 3.6310 17.7953 22.1055

error (%)

5% Noise, Iteration = 9

σi (×σ0) 4.3929% 10.3269% 12.3664% 15.4486%

Relative 12.1420 3.2690 17.5573 22.7570

error (%)

10% Noise , Iteration =9

σi (×σ0) 4.3157 % 9.0552 % 11.7929 % 15.3774%

Relative 13.6860 9.4480 21.3807 23.1130

error (%)

15% Noise , Iteration = 9

σi (×σ0) 4.2279% 8.0355% 11.3282% 15.2685%

Relative 15.4420 19.6450 24.4787 23.6575

error (%)

For the inverse problems, carrying out a number of nu-

merical simulations, we summarize in Tables 1-5 our compu-

tational simulations related to characterize internal profiles

of SCC parameters q = {σ1, σ2, σ3, σ4} using the proposed

method given by the set of the simulated data {Zd(ω,Jl
s)}L

l=1

generated by solving the systems (20) and (22). Random

noise at various level was added to the numerical solution,

thereby producing simulated noise data for algorithm.

In Tables 1-5, the initial guesses were taken as

{σ1, σ2, σ3, σ4} = {1%× σ0, 1%× σ0, 1%× σ0, 1%× σ0}

while the true parameters in Tables 1-3 were chosen as

{σ1, σ2, σ3, σ4} = {5%× σ0, 10%× σ0, 15%× σ0, 20%× σ0}

and in Tables 4-5 were

{σ1, σ2, σ3, σ4} = {5%× σ0, 10%× σ0, 20%× σ0, 25%× σ0}.

The applied frequencies f were given as 300[kHz] in Tables

1 and 4, f = 450[kHz] in Tables 2 and 5 and f = 600[kHz] in

Table 3. The estimated parameter values listed in Tables 1-

5 are for the data with noise free and with data containing 5,

10 and 15% relative noise. The relative error was computed

as

Relative error =

∣∣∣∣
Estimated value− True value

True value

∣∣∣∣× 100%.



Table 4 Estimated value using frequency f =

300.00[kHz].

True value = {σ1, σ2, σ3, σ4} = {5.0%,10.0%,20.0%,25.0%}
(×σ0)

Estimated value with Noise free , Iteration = 9

σ1 σ2 σ3 σ4

σi (×σ0) 5.6858% 7.9746% 15.8983% 20.1957%

Relative 13.7160 20.2540 20.5085 19.2172

error (%)

5% Noise, Iteration = 9

σi (×σ0) 5.5586% 7.8163% 15.7840% 20.1688%

Relative 11.1720 21.8370 21.0800 19.3248

error (%)

10% Noise , Iteration =9

σi (×σ0) 4.5195 % 7.3401 % 15.7009 % 20.1589 %

Relative 9.6100 26.5990 21.4955 19.3764

error (%)

15% Noise , Iteration = 9

σi (×σ0) 4.5687% 7.5813% 18.3691% 20.9859%

Relative 8.6260 24.1870 8.1545 16.0564

error (%)

Table 5 Estimated value using frequency f =

450.00[kHz].

True value = {σ1, σ2, σ3, σ4} = {5.0%,10.0%,20.0%,25.0%}
(×σ0)

Estimated value with Noise free , Iteration = 8

σ1 σ2 σ3 σ4

σi (×σ0) 5.4632% 8.6749% 16.3504% 20.3102%

Relative 9.2640 13.2510 18.2480 18.7592

error (%)

5% Noise, Iteration = 8

σi (×σ0) 4.7162% 11.8700% 19.7559% 21.4432%

Relative 5.6760 18.7000 1.2205 14.2272

error (%)

10% Noise , Iteration =8

σi (×σ0) 4.7679% 8.5747% 16.6777% 20.4537%

Relative 4.6420 14.2530 16.6115 18.1852

error (%)

15% Noise , Iteration = 8

σi (×σ0) 4.8959% 8.5660% 16.5688% 20.1251%

Relative 2.0820 14.3400 17.1560 19.4996

error (%)

As shown in Tables 1-3, the relative errors in the estimated

value results of each row tend to be bigger as the index i

increases, since those are caused by the depth δ given by

(25). Hence the resolution of our inverse problem depends

on the physical environments inspected.

6. Concluding remarks

A computational method was considered to recover in-

ternal profiles of stress corrosion cracking related to eddy

current testing. The method for recovering is directed to

electromagnetic inverse problem by characterizing each sub-

region of the SCC decomposition using its non-zero electrical

conductivity, while an estimation technique for inverse anal-

ysis is proposed by a hybrid use of the forward analysis and

inspection data. This method is an important feature for

the problem of recovering internal profiles treated here. The

proposed inverse analyses for recovering internal profile of

SCC were successfully tested with the simulated data.

Our current study is directed to the inverse problem for the

more complicated structures of SCC and the computational

problem with experimental data.
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