Transactions of JASCOME, Vol. 6, No. 2 (Dec. 2006), Paper No. 10-061208

JASCOME

TREE DATA STRUCTURES FOR FAST MULTIPOLE METHOD

Jianming ZHANG ", Masataka TANAKA 2

1) Faculty of Engineering, Shinshu University, (Nagano 380-8553,
2) Faculty of Engineering, Shinshu University, (Nagano 380-8553,

e-mail: zhangjm@homer.shinshu-u.ac jp)

e-mail: dtanaka@gipwc.shinshu-u.ac.jp)

In this paper, we study the tree data structures for Fast Multipole Method. We have
considered three options, namely the degree of the decomposition, the clustering cell
boundary and the number of expansion terms in multipole to local translations. These
options yield twelve separate algorithms. Computational study on domains of various
geometrical shapes reveals that the binary tree is sometimes better sometimes worse than
the standard oct-tree, while the adaptive tree with tight bounds and adaptive value of the
number of expansion terms exhibits the best performance in all cases.

Keywords: fast multipole method; tree data structure; oct-tree; binary tree; adaptive tree;
boundary element method; hybrid boundary node method

1. Introduction

The Fast Multipole Method (FMM) of Roklin and
Greengard [1] was first introduced as a fast solution method
in astrophysics for simulation of N-body systems in which
the interactions between the bodies are gravitational.
Because of the computational analogy between the force
evaluation for the N-body problem and the matrix-vector
multiplication, the FMM is widely employed in conjunction
with iterative solvers to accelerate the solutions of elliptic
partial differential equations (PDEs) through the boundary
integral equation (BIE).

The FMM is capable of achieving fast multiplication of
particular dense matrices with vectors, and it aliows for the
reduction of memory complexity. Generally, the FMM
reduces the computational cost for the matrix-vector
multiplication from O(N?) to O(N), where N is the total
number of unknowns, thus making possible scientific and
engineering computations of large scale problems.

The FMM uses multipole expansions (in terms of series)
to approximate the effects of a distant group of particles,
namely elements in Boundary Element Method (BEM) or
nodes in Hybrid Boundary Node methed (HdBNM) [2], on a
local group, and translations (M2M, M2L and L2L) between
these expansions. Another aspect of the FMM is that it uses
a hierarchical decomposition of space to define ever-larger
groups as distances increase. In 3D cases, an oct-tree
decomposition is usually employed. The multipole
expansions and translations are orchestrated within the tree
in an effective way to obtain an algorithm with O(N)
asymptotic complexity.

The major obstacle in achieving reasonable efficiency with
high accuracy is the large number of the multipole to local
translations (M2L). To overcome this obstacle, Greengard
and Rokhlin [3] proposed a new diagonal form, which
reduces the M2L cost from O(p*) to O(p?), where p is the
number of terms in the truncated expansion series. Another
way for reducing the cost of translation operators is to lower
the number of M2L operations by using a new tree data

structure. Anderson [4] studied systematically how a spatial
data structure influences the performance of FMM, and
concluded that a binary, spatially balanced decomposition
tree with tight bounds is the best tree data structure for
FMM. Recently, Urago et al [5] implemented this idea in a
FMM simulation of electrostatic field, and gained an
efficiency improvement of two to three times over the
standard algorithm. The authors of this paper have also
proposed a new adaptive node-cluster algorithm [6], in
which rectangular boxes are used instead of cubes, and the
boxes are subdivided according to their shapes. More
importantly, the values of p for the M2L translations are
determined by the distance between the two interaction
boxes. Numerical examples have shown that the new
adaptive algorithm can provide a huge improvement in
efficiency over the standard oct-tree.

The present paper attempts to give a direct comparison
between different tree data structures. Our main contribution
consists in a systematic computational study aimed at
assessing the effectiveness of the tree data structures for
problems with different domain geometries. We have
considered three options that can be applied independently,
yielding twelve separate algorithms. The first option is the
degree of the decomposition. There are three choices,
namely the standard oct-tree, the binary tree and the
adaptive tree for this option. The second option relates to the
definition of cell boundary. The choices are either loose
bounds or tight bounds. The third option concerns the values
of p for the M2L translations. We can use either a fixed
value of p for all M2L translations or an adaptive value for
different translations. The comparison has demonstrated that
effectiveness of a tree data structure depends on the shape of
the computational domain it is applied to. For some domain
geometries the binary tree is superior to the oct-tree, but it
may be inferior for other geometries. The adaptive tree with
tight bounds and adaptive value of p, however, is the best
algorithm in all cases.

2. Review of the fast multipole method

— 131 —

In either BEM or HABNM, when we use an iterative solver,
such as GMRES, the most time-consuming part of
computation will be the matrix-vector multiplication in each
iteration step. Considering an iteration vector x* at the -th
step, the matrix-vector multiplication at the k+1-th step is

N
=2 [#3v,x5dr (1)

or
,nl = Z J'r

where x'**! is a temporary vector from which x**'is then
computed according to the iteration scheme of the solver; N
is the total number of nodes or elements; v; is a weight
function or a shape function; I',is a local region around a

99, , yrar)

node s; or the /-th element; &; is the fundamental solution

with the source at a node s;. For 3-D potential problems, the
fundamental solution can be written as

1

¥ i) ?

where Q is a field point, and #(Q, s,) is the distance between
Qands,.

Direct computation of Egs. (1) and (2) gives an O(N?)
algorithm. The FMM can be employed to reduce the
complexity to O(N).

2.1 Cell-cell interaction

The FMM mainly uses three addition theorems which are
briefly explained below.

First Addition theorem: Define solid spherical harmonics
R (r)and 57 (r) as[7]

nt — 1 m imp _.n
R’ (r)—(n+m)!Pn (cosa)e™r

Sy (r)=(n-m)\P"(cosa)e™” —
,
Here (r,@,f) are spherical coordinates of the point r;
F(cosa) is the associated Lengendre function of integer
order m and degree n. Let r, and r, be two points with

spherical coordinates (4,2, 8)and(r,@,,f3,), respectively.

It follows that
I >3 R(R)S(). i<l
n=0 m=-n (4)
|l'. "’z| Zo Z_: R™ (rz)S,'," () |"n|>|r2|

In the above equation, the overbar means the complex
conjugate of a complex number.

Second Addition theorem: If r, and r, are two vectors such
that ll',|>|rz| then
S7(n-

n

=3 Z RY (5,)57 ())

n'=0m'=—n"

Third Addition theorem: If r, and r, are two arbitrary
vectors, then

Ry (r, l’2

Z Z Ry (-1,) R (1) ©6)

n'=0 m'=-n'

Instead of treating interactions with each of the distant
nodes individually, the FMM computes cell-cell interactions.
Consider two cells C, and Cp, which contain N, and N,
nodes, respectively. The computational complexity of a
standard algorithm for the mutual interactions between the
two groups is of order O(N, xN,) (Figure 1a). In the cell-

cell strategy, it is reduced to O(N, +N,) (Figure 1b).

Cy: Ny nodes

Cy: Ni nodes

C, N, nodes /

Cy: Np nodes

a

@
Figure 1. Interaction between two cells.
Substituting Eq. (3) into Eq. (1) and using the first addition

theorem, with the summation over the nodes included in C,
(see Figure 1c), we obtain

ﬁ L— ¢;v,(Q)x;dT
%
=33 I3 —s (0,0)v,(Q)dTM (0,)

n=0 m=-n

where the coefficients of multipole expansion M (0,) is
defined by

N —
M (0) =3 R (O3s,)x) ®)
J=t
Using further the second addition theorem, Eq. (7) becomes

2 [, #ivi(@xiar
-3

n'=0 m'=-n'

®
—R'” (0,Q)v,(Q)dT L (0,)

where the coefficients of local expansion L7.(0,) is given by

LO)=33 Y STr@opMm©) (10)

n=0 m=-n

—132—

Equation (10) is known as the mulitipole to local (M2L)
translation, as it transforms the coefficients of multipole
expansion of C, to the coefficients of local expansion of C,.

Suppose that C, and C, are obtained by subdividing other

two larger cells C? and C/, known as the parent cells of C,

and C,, respectively. Assume that C? and C/ are still far

away from each other (see Figure 1d). We can then
transform the coefficients of multipole expansion of C, to

that of C/ (M2M) using the third addition theorem,
transform the coefficients of multipole expansion of C; to

local moments of C¥ (M2L), and finally to coefficients of

local expansion of C, (L2L) using the third addition theorem
again. Therefore, Eq. (10) becomes

o)=33 R OO an

n=0 m=-n
and
LOp=Y > (1ysErOopME @) (12)
n'=0m'=-n’
Mz (@)=Y > RIOOYMIT Q) (13)

n=0 m=-n

The above process can be recursively repeated down to the
root cell that contains the entire computational domain. In
the above process, the addition theorems are used to separate
the source and target points in the fundamental solution and
the pair of points in the solid spherical harmonics, so that the
coefficients of multipole expansion and local expansion are
related only to the individual cells. Therefore, these
coefficients can be calculated independently and can be
aggregated into ones to represent temperature due to ever
larger groups of nodes. Moreover, once calculated, they can
be reused for other cell-cell interactions.

2.2 Tree construction and FMM algorithm

In the previous section, we have described the process of
cell-cell interaction. We have seen that the two points in
two-point functions can be separated freely by addition
theorems. All the resulting coefficients of expansion can be
calculated independently. This allows for the freedom to
arrange these computations in order to achieve better
efficiency. In the FMM, actually, the cell-cell interaction is
not performed separately for each pair of well-separated
cells. An elaborate algorithm has been designed. This
algorithm is facilitated by a tree data structure, which
hierarchically decomposes the entire region into cells at
different levels.

The standard FMM algorithm uses an oct-tree. The entire
computational domain is assumed to lie inside a cube, which
is referred to as the root cube at level 0. The oct-tree is
constructed by recursively subdividing the cubes into eight
sub-cubes by splitting each cube at the geometrically central
point. The cubes at level /+1 are obtained from cubes at
level /, where the eight sub-cubes at level /+1 are considered
children of the cube at level /. The subdivision continues
until cubes contain less than a given number of particles
(boundary nodes in HdBNM). If a child cube does not

contain any node (that is, it is empty), it is deleted. A
childless cube is called a leaf.

With the tree, the FMM consists of two basic steps:
upward pass and downwards pass. During the upward pass,
the coefficients of multipole expansion are summed from its
children using the M2M translation for each non-leaf cube.
In the downwards pass, the tree is traversed from the root to
leaves to compute the coefficients of local expansion. For
each Cube C, these coefficients are the sums of two parts.
Firstly, the L2L translation collects the coefficients of C’s
parent. Secondly, the M2L translation collects the
coefficients of multipole expansion of the cubes which are
the children of the neighbors of C’s parent but are not
adjacent to C (these cubes compose the interaction list of C).
Finally, for each leaf, the far interaction, which is evaluated
using the coefficients of local expansion at this cube is
combined with the near interaction evaluated by iterating
over all the source nodes in the neighborhood of the leaf
cube to obtain the entire sum in Eq. (1).

3. Comparison schemes

Although the FMM possesses linear asymptotic
performance, the constant factor of the run time still remains
very large. This is mainly due to the large number of M2L
translations for each cube at every level. One way to reduce
the number of M2L translations is to find a better tree data
structure [4, 5). There is a tremendous flexibility in the
choice of tree data structure that could be used in the
algorithm. To enhance the accuracy of the computation, it is
important that the cells have roughly the same size in all
directions. It is also desirable that the cells chosen reflect the
geometry of the computational domain as accurately as
possible. It is obvious that the oct-tree does not necessarily
match the structures commonly used in engineering (a shell-
like structure or a slender object, for example) since the oct-
tree is constructed by choosing splitting planes oblivious to
node distribution. As the cost of tree construction is minor, it
is possible to use a tree data structure that is more expensive
to construct than the oct-tree and still achieve a net gain in
performance. In this section, we explore how to improve the
constant factor of the algorithm by improving the tree data
structure. We try to give a collection of results that show
how different tree properties influence the performance of
algorithms, and to determine the best data structure to use in
the FMM. For the purpose, we consider three options that
can be applied independently. The first option has three
choices, while the second and the third have two choices,
respectively. Thus, these options will totally yield twelve
algorithms.

3.1 Decomposition strategies

The first option is the degree of the decomposition. Here
the degree means the number child cells of a parent cell in
the decomposition. There are three choices for this option.
The first choice is the standard oct-tree decomposition, in
which each cell is equally subdivided into eight child cells.
We have described this tree in detail in the previous section.
The second choice is a binary decomposition which splits
the longest dimension of a cell evenly. The binary tree is
now becoming popular in the FMM community. The third
choice is an adaptive decomposition we have proposed. The

—133—

adaptive decomposition is based on the standard oct-tree
decomposition, but differs in the following aspects:

1. Instead of using cubes, the adaptive decompostion uses
rectangular boxes to decompose the computational domain.
It is believed that a rectangular box is more flexible in
matching structures.

T ED
1 = 5

(c)
Figure 2. Subdivision of a box.

2. In contrast to the oct-tree decomposition, where
subdivision of a cube is oblivious to geometry, a box in the
adaptive decomposition is split into child boxes based on its
shape. Let L, L,, and L, be the side lengths of a box in the
three coordinate directions, respectively, and suppose L, >
L, > L, without loss of generality. We subdivide the box

according to the ratios between the values of the side lengths.

More precisely, we consider three cases below:

(1) When L\/L,> 1.5, we split the box in the direction of
the longest side (see Fig. 2a). Moreover, the number of child
boxes, n, also depends on the ratio, L,/L,. If L,/L,> 7.5, n=8;
else n=Int(L,/L,)+1, where Int() refers to the integer part of
a real number.

(2) When L\/L,< 1.5 and L,/Ly> 1.5, we split the box in the
two directions shown in Fig. 2b. The number of child boxes
is fixed to 4.

(3) When L,/L,< 1.5 and L,/L; < 1.5, we split the box in the
three directions shown in Fig. 2¢c. The number of child boxes
is fixed to 8.

Therefore, the degree of the adaptive decomposition is
neither 8 nor 2. The number of offspring of a parent box is
dependent on the shape of the box.

3.2 Cell bounds

The second option relates to the definition of cell boundary.

The choices are either loose bounds or tight bounds. Boxes
with tightened bounds have been investigated by Anderson
[4], and are proven to be more efficient in separating a node
set into well-separated clusters. One method for choosing
the rectangular boxes is to subdivide the cubes when the
cells are split. The bounds of the cells are inherited from the
bounds of the parent cell. This method is referred to as loose
bounds and is the way that used in the standard oct-tree
decomposition. An alternative way to define the cell
boundary is to use a smallest box to enclose the cluster of
boundary nodes. The bounds are actually the bounds of the
node set and are referred to as tight bounds. When cells are
split, the location (and even the dimension) of the split
depends upon the bounding faces of the box. This means

that the tight bound and loose bound tree for the same set of
nodes will have a different structure. Note that when tight
bounds are used, the bounding box is computed before the
cell is split. This is different from using loose bounds for
computing all of the splits and then tightening the boxes.

3.3 Number of terms in truncated M2L translation series

In practical computation, the infinite series in Egs. (9-13)
are truncated after p terms. The error estimation of the
truncated series can be found in [3]. The third option is
concerned with how to choose the value of p. The way in the
standard FMM algorithm is to use a fixed p for all M2L
translations. Alternatively, we can also use adaptive values
of p of the truncated series for different M2L translations. In
this study, the adaptive value is determined by

p=o.117pm/1og(a) (14)
—-a

P
where p,,m is a norm value; a is the maximum radius of the
two spheres that enclose the two interacting cells, and p is

the distance between the centers of the two boxes.

4. Numerical comparative results

The three options of tree data structure result in twelve
algorithms. These algorithms have been implemented in
computer codes written in C++. We will test and compare
these algorithms on two objects: a bulky object namely a
cube and a slender rectangular box, which are shown in Fig,
3 and Fig. 4, respectively. The sides of the cube are
paralleVperpendicular to the coordinate axes, while for the
slender box they are not. The dimensions are given by a=2,
b=16 and c=2.

Figure 3.The cube.

Figure 4. The slender box.

We consider the following field distribution:
p=x"+y +2° =3yx? = 3xz% - 32)? (15)

and solve a Dirichlet problem, where the essential boundary
conditions are imposed on all the surfaces according to Eq.
(16). We have performed computations on four node
arrangements: [40, 40,40], [80,80,801], [120,120,120] and
(160,160,160] for the potential problem in the cube, and
five node arrangements: [20,160,20], [28,224,28],
[40,320,40], [49,392,49] and [56,453,56] for the

problem in the slender box, where [n,,n,,n] refers to
n,xn., n.xn, and n,xn, evenly spaced nodes on the

surfaces with side lengths b and ¢, ¢ and a, and a and 5,
respectively.

To assess the accuracy of the algorithms, we evaluate the
relative error of nodal values of normal flux using the

— 134 —

following ‘global’ L, norm:

1 1
erm =g ;;(q,-“’—qf”’)2 (16)

max

where ¢; is the normal flux at node i, and lg is the

maximum value among the nodal values; » is the total
number of nodes; the superscripts (e) and (n) refer to the
exact and numerical solutions, respectively.

In the computations, we set the maximum number of
boundary nodes in a leaf to be 60, and take both the fixed p
and the normal value of the adaptive p, p,,. as 10. The
preconditioned GMRES is employed with the preconditioner
being the inverse of the blocked diagonal matrix
corresponding to the nodes in leaves. We terminate the
iteration of GMRES when the relative error is less than 107°.
All computations are carried out on the same desktop
computer with an Intel(R) Pentium(R) 4 CPU (1.99GHz).

90 T T T T T T
80+ - O-L-F 1
§ 70 —o—O-T-F -
) —A—B-L-F
5 60 -v—B-T-F E
"E 50 —o— A-L-F v
8 1 —-4— A-T-F 1
5 404 E
o
g . /]
-
g 204 4
101 E
0+]

0 30000 60000 90000 120000 150000
Number of unknowns

Figure 5. CPU times for the cube by algorithms with fixed p.

a5 T T T T A 3
404 [-o-oLa .
3 —0—O-T-A
8 3] |-a-sLa)
g 30- —v—B-T-A 8]
- —O—AL-A
§ 254 |—<—-ATA 4
=
g 20 .
g 154 / 4
2D
5™ / 4]
5]
01— v T T T v
0 30000 60000 90000 120000 150000
Number of unknowns
Figure 6. CPU times for the cube by algorithms with
adaptive p.

Our performance measure is the CPU time used for one
iteration. Figs. 5-8 plot the CPU seconds as a function of the
number of unknowns for the two geometries by the twelve
algorithms. In the figures, the first letters of the legends, O,
B and A denote oct-tree, binary tree and adaptive tree,
respectively. The second letters L and T stand for loose cell
bounds and tight bounds; and the third letters F and A for
fixed and adaptive p, respectively. From the figures, we
make the following observations:

140 1

—a—O-L-F

120 4 —e—O-T-F < 4
—A—B-L-F

100 4 —v—B-T-F N / p

-o-A-LF / <
80+ —4—AT-F
601 :4
/'

40

204 Zi/Q
e

A

CPU time per iteration (Sec.)

A\

0 20000 40000 60000 80000 100000 120000
Number of unknowns

Figure 7. CPU times for the slender box by algorithms with
fixed p.

0 . y . T —5—]
—-0-O-L-A
¥ —0—O-T-A)
$ 30 —5-BLA]
122 ~v—B-T-A
§ 25- .
g
2 204 XA
g
S 154 1
g
S 10 E
o
S 5]]
0 , T ¥ r r
0 20000 40000 60000 80000 100000 120000
Number of unknowns
Figure 8. CPU times for the slender box by algorithms with
adaptive p.

1. Comparing Figs. 5 and 6, and Figs. 7 and 8, we see that
algorithms with adaptive p are asymptotically superior to
that with fixed p. The use of adaptive p improves the
computational efficiency by nearly two folds. With fixed
p, the binary tree with tight cell bounds (B-T-F) provides
the best efficiency (see Figs. 5 and 7), while with
adaptive p, the adaptive tree with tight cell bounds (A-T-
A) is the best algorithm (see Figs. 6 and 8).

2. In the case of the cube (see Fig. 6), the oct-tree with tight

cell bounds and adaptive p (O-T-A), has very close
computational efficiency as the adaptive tree with tight
cell bounds and adaptive p (A-T-A). In this case, the oct-
tree is superior to the binary tree (B-T-A). However, it is
inferior to the binary tree (B-T-A) for the slender box
(see Fig. 8). This implies that the effectiveness of a tree
data structure depends on the shape of the computational
domain it is applied to. We happily see that the adaptive
tree with tight cell bounds and adaptive p (A-T-A)
outperforms all other algorithms for both two
computational domains.

3. Figs. 5 and 6 show that, for problem in the cube, O-T-F,
O-T-A, B-T-F and B-T-A perform better than O-L-F, O-
L-A, B-L-F and B-L-A, respectively. In the case of the
slender box (see Figs. 7 and 8), B-T-F and B-T-A
perform better than B-L-F and B-L-A, while O-T-F and
O-T-A worse than O-L-F and O-L-A, respectively. This
demonstrates that the effectiveness of using tight cell
bounds depends not only on the shape of the

—135—

computational domain, but also on the choice of data tree.
For binary tree, tight cell bounds can provide better
efficiency. For oct-tree however, it may hurt the
performance. This observation is consistent with that in
[4], where the author showed that, in two dimension case,
binary trees with tight bounds have the same asymptotic
run time as the trees with loose bounds. However, for
quad-trees, tight bounds can lead to trees that are much
worse than trees with loose bounds.
In order to check if the above observations are valid in even
larger computational scales, we have also performed
computations on the node arrangement [200, 200, 200] for
the potential problem in the cube. The total number of
unknowns of this computation is 240000. The results are
summarized in Table 1. The first column lists the algorithms
used; the second column lists the number of M2L
translations (the total number of cell-cell interactions).The
third, fourth and fifth columns list the times used for
constructing the tree, solving the system of equations and
one iteration are listed, respectively. The relative errors of
nodal values for normal flux are presented in the sixth
column. The results show that algorithms have similar
accuracy, however, the binary trees are considerably worse
than other trees, although they do decrease the number of
M2L translations. The best algorithm is O-T-A, which
perform slightly better than A-T-A. The reason for the very
bad performance of the binary tree in this case has not been
clear and needs further investigation. It is also seen that the
CPU times for constructing the trees are very close for all
the algorithms. (Moreover, these times are so small that they
can be ignored when compared with that used for solving
the system equation.)

Table 1. Results of computations on node arrangement [200,
200, 200] for the cube.

Tiree Topu Tier err,
Algor. Niwerwr (00 (sez:.) (sec.) (XIO?“)
O-L-F 340328 195 2603 100 335
O-T-F 263114 197 3196 94 294
B-L-F 195648 199 42003 1167 277
B-T-F 130614 194 26918 728 2.50
A-L-F 249896 196 2665 103 334
A-TF 141318 199 3309 97 294
O-L-A 340328 198 25462 979 3.52
O-T-A 263114 197 1120 33 3.55
B-L-A 195648 199 33058 918 281
B-T-A 130614 196 36450 985 2.53
A-L-A 249896 197 26234 1009 3.52
AT-A 141318 199 1252 34 3.10

5. Conclusions

In this paper, we have performed a comparative study on
the tree data structure for FMM. We have considered twelve
algorithms that come from three options, namely the
decomposition strategy, definition of cell bounds and the

determination of number of terms in truncated M2L
translation series. The numerical results have demonstrated
that the effectiveness of a tree data structure depends on the
shape of the computational domain it is applied to. The
binary tree is sometimes better and sometimes worse than
the standard oct-tree. The tight cell bounds can be used for
binary and the adaptive trees without hurting the
performance, while for oct-tree the tight cell bounds may
cause a substantial slowdown. The argument of this paper is
that the adaptive tree with tight cell bounds and adaptive
number of terms in truncated M2L translation series is the
best algorithm for FMM.

Acknowledgements

The support of Japan Society for the Promotion of Sciences
(JSPS) and Shinshu University, Nagano, Japan, is gratefully
acknowledged. Parts of this work were financially supported
by the Grant-in-Aid for JSPS Fellows No. 17_05075.

References

1. Rokhlin V., Rapid solution of integral equations of
classical potential theory. J. Comput. Phys., Vol. 60
(1985), pp. 187-207.

2. Zhang JM., Yao Z.H., Li H., A hybrid boundary node
method. Int. J. Num. Meth. Engng., Vol, 53 (2002), pp.
751-763.

3. Greengard L., Rokhlin V., A new version of the Fast
Multipole Method for the Laplace equation in three
dimensions. Acta Numerica, Vol. 6 (1997), pp. 229-269.

4. Anderson R.J.,, Tree data structures for N-body
simulation. SIAM J. Comput., Vol. 28 (1999), pp. 1923-
1940.

5. Urago M, et al, Fast multipole boundary element
method using the binary tree structure with tight bounds:
application to a calculation of an electrostatic force for
the manipulation of a metal micro particle. Engineering
Analysis with Boundary Elements, Vol. 27 (2003), pp.
835-844.

6. Zhang J.M., Tanaka Masa., An effective tree data
structure in Fast Multipole Method, Transactions of the
Japan Society for Computational Methods in
Engineering, Vol. 6 (2006), pp. 17-22.

7. Yoshida K., Applications of Fast Multipole Method to
Boundary Integral Equation Method, Ph.D. dissertation,
Department of Global Environment Engineering, Kyoto
University, 2001.

— 136 —

