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This paper presents an iterative solution strategy for boundary element analysis of acoustic
field problems based on flexible GMRES method. A recently proposed formulation for
higher order elements has been used for boundary element discretization, which employs
Burton-Miller approach at interior nodes and the normal derivative integral equation at the
corner nodes of a quadratic element. Resulting linear system is solved using an inner-outer
GMRES iterative scheme in which the outer iteration corresponds to the flexible GMRES
method. The inner iterations correspond to the GMRES method and provide a right
preconditioner for the outer flexible GMRES iteration. Numerical results have been
obtained using fully assembled boundary element system matrix. The present
implementation essentially forms the first step in our ongoing research on development of a
fast iterative solver for the recent boundary element formulation for higher order elements.
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1. Introduction

The boundary element method (BEM) offers an attractive
alternative to domain discretization methods (FEM, FVM,
FDM) for solution of acoustic problems. BEM is especially
attractive for exterior acoustic problems since it implicitly
fulfills the Sommerfield radiation condition. Reduction of
dimensionality provided by BEM tremendously simplifies
the pre-processing step involving modeling and grid
generation. However, the traditional BEM has a serious
disadvantage vis-a-vis FEM for large-scale practical
problems. The boundary element discretization yields a
dense indefinite system matrix, which results in cost and
memory requirement of O(N?) in the number of unknowns
as compared to O(N) requirement of finite element
techniques. Thus, the recent boundary element research has
been focused on fast iterative solvers, which can alleviate
this problem [1-11]. Most of these developments are based
on Krylov subspace iterative solvers [12] in conjunction
with appropriate preconditioners and fast multipole method
for evaluation of matrix-vector products, which reduce the
memory as well as computational complexity from O(N?) to
O(Nlog® N) where ¢ > 1 is a small positive number.
Amongst Krylov subspace solvers for general linear systems,
the generalized minimum residual method (GMRES) [13]
has emerged as the most robust iterative solver [14].

For exterior problems (or interior problems containing
subdomains), special care is required in the integral equation
formulation. Use of the standard boundary integral
formulation does not yield a unique solution for this class of
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problems at resonance frequencies of the associated interior
problem. Two different approaches have been adopted to
ensure uniqueness of the numerical solution. The first one
(Schenk [15]) employs additional collocation points in the
domain. The second approach (due to Burton and Miller
[16]) uses a linear combination of the standard and the
hyper-singular (normal derivative) boundary integral
equations. A variant of the Burton-Miller approach has been
recently proposed by Tanaka et al. [17,18] for higher order
elements. This new formulation employs the combined
integral equation (Burton-Miller approach) at the interior
nodes of a quadratic element and only the normal derivative
boundary integral equation at the extreme (corner) nodal
points. This approach ensures the uniqueness of the solution
and also provides considerable reduction in the number of
evaluations of boundary integrals and kernel functions as
compared to the Burton-Miller formulation. Thus, this new
formulation would improve the computational efficiency of
the boundary element method for acoustic field analysis.

Boundary element implementation of Tanaka et al.
[17,18]] is based on direct solution of the boundary element
system, which precludes its applicability to large-scale
problems. The present work is a part of on-going effort to
develop a fast solver for this formulation which involves
two distinct tasks: (i) an iterative solver based on GMRES
method with an appropriate preconditioner, and (ii)
extension of fast multipole method for matrix-vector
products. We focus on the first task in this paper. The
second part, which would complete the implementation of
the fast solver, would be reported later.



We note that most of the existing fast multipole
boundary element (FMBEM) implementations are based on
constant elements. Although the conceptual framework of
FMBEM remains the same for any element and problem
type, details and complexity of implementation vary
considerably. Thus, the available details in the literature
would require considerable extension for FMBEM
implementation of the new boundary element formulation,
which exclusively involves quadratic (or higher order)
elements.

We present a brief review of the new boundary integral
formulation in the next section. This is followed by an
overview of the iterative solver based on the flexible
GMRES method, sample numerical results and concluding
remarks.

2. Boundary integral formulation

For time harmonic behavior, the pressure p in an acoustic
field is governed by the Helmholtz equation

V2p(x)+k* p(x)+ f(x)=0 (H
where & is the wave number and /' is the source term. For
exterior problems, the Helmholtz equation (1) is solved in
the domain Q" which is the complement to the open set
QcR® with boundary I'=IVUTP, On the Dirichlet
boundary I'®, acoustic pressure is prescribed as

p(x)=p(x), xel” (2
On the Neumann boundary ', acoustic flux is given as
o _
90)=22=70), xer" )
n

Application of regularized boundary integral formulation to
Helmholtz equation (1) yields the ordinary boundary
integral equation (OBIE) [17]:

[{g' -0 (. »)}p(x) drx)
+ [0 () {p(x) - p(y)} dT(x) )

=-iwp [ p"(x,y) v(x) dC(x)+ Ip"(x*, y)
where p’(x,y) is the fundamental solution of the Helmholtz
equation and ¢ (x, y) is its normal derivative; Q' (x,y)is the
normal derivative of the fundamental solution for Laplace
equation; / is the intensity of the point sound source and v(x)
is the velocity related to the acoustic flux by
q(x) =—iwpv(x) , p being the air density.

Taking the normal derivative of eq.(4) at the source

point y results in the following normal derivative boundary
integral equation (NDBIE)[17]:
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In the preceding equation, for a function z, Z = 8z/dn(y),
¥y =X, —Y., Hm is the component of unit normal in

direction m, and u" is the fundamental solution to the
Laplace equation.

Equations (4) and (5) can be rewritten in the following
compact form using operator notation:

OBIE: (Kp)(»)+(")(») =b(y) (6)

NDBIE: (Dp)(y)+(Kv)Xy)="b'(y) M
Both the OBIE (6) and NDBIE (7) fail to yield a unique
solution if the frequency corresponds to an eigenfrequency
of the associated interior problem. Burton and Miller [13]
showed that a linear combination of (6) and (7) (CBIE)
yields a unique solution for all the frequencies. Tanaka et al.
[17,18]] propose a new method that does not apply the linear
combination at all nodes of a quadratic element. They
instead propose to use (a) Burton-Miller approach (CBIE) at
the end points (or corner nodes) and the scaled NDBIE at
the rest of the nodes [17], or (b) Burton-Miller approach
(CBIE) at middle and NDBIE at corner nodes [18]. Both the
options have been shown to yield a unique solution, and
require fewer boundary integral and kemel function
evaluations as compared to the usual Burton-Miller
approach. Of these, option (b) has been observed to be
slightly more efficient than option (a) and is summarized in
the following box:

NEW BIE FORMULATION (18]
o [fthe source point is an interior node, use the CBIE

[(pry)+(Vv)(y)]+%[(0p)(y>+(K'v)(y)]
. ®)
=b(y) +%b'(y)

e Else if the source point is a corner node, use the scaled
NDBIE

%[(Dp)(y) +HKV)(»)] = %b'(y) ®

In the preceding equations, i/k is the coupling parameter
chosen to yield a favorable condition number and has been
shown to be quasi-optimal by Kress [19].

3. Iterative solution of boundary element system

Boundary element discretization leads to a linear system
Ax=b (10)

The system matrix A is fully populated, non-Hermitian and
indefinite. Hence, the direct solution of eq.(10) is not
feasible for large-scale problems because of the prohibitive
memory and computing time requirements. Thus, iterative
solution of (10) is the only viable option.

3.1 Generalized minimal residual method (GMRES)

Various iterative methods are available for solution of large
linear systems. Of these, Krylov subspace methods [12] are
the most-suitable iterative solvers for the boundary element
system (10). The generalized minimal residual method




(GMRES)[13] has emerged as the most robust and
appropriate choice amongst the Krylov subspace methods.
Various black-box implementations of GMRES are
available in public domain, which can be easily tailored for
use with a boundary element program. In the present work,
we have opted for the GMRES implementation of Fraysse et
al. [20,21] which is based on the reverse communication
mechanism for matrix-vector products and preconditioning,
and thus, provides a very flexible interface for its integration
with the user-specific program. Full details of the GMRES
algorithms and guidelines for the use of the routines based
on them can be found in Fraysse et al. [20,21].

3.2 Approximate inverse preconditioner

The rate of convergence of any Krylov subspace method is
dependent on the choice of the preconditioner. Various
preconditioners have been tried for the boundary clement
system for acoustic problem including incomplete LU
decomposition and approximate inverse preconditioners.
Approximate inverse methods are generally less prone to
instabilities on indefinite systems, and hence, preferred in
boundary element analysis. The construction of the
approximate inverse preconditioner is normally based on the
operator splitting taking advantage of the rapid decay of the
Green’s function [5]. The integral operator 4 (which
corresponds to the system matrix A) can be split as

A= 4, +4 (11)

where 4, represents a bounded contribution and A4 is the

remaining part. The choice of the sparsity pattern has a
strong influence on the convergence of the iterative solver.
Carpentieri et al. [22] discuss the effective of various sparse
selection strategies in the context of electromagnetic
problems. Typically, the operator 4, is constructed by

considering a layer of elements I'j around a source point
[22,23]. Although the operator 4, is sparse, exact
application of 4;' would be too expensive. Hence, an
approximate inverse of 4, is computed based on Frobenius
norm minimization (i.e. min||l—AM||F ) to obtain the

approximate inverse preconditioner matrix M. Frobenius
norm is chosen since it allows the decoupling of the
constrained minimization problem into N independent linear
least squares problems using the identity

min |1 - AM]} = ‘ﬁmin"e, ~Am ! (12)
jsl

where my; is the column vector representing the ji, column of
M, and ¢; is the ji canonical unit vector. The construction
of the preconditioner can be further simplified by using the
sparse approximation A, based on the sparsity pattern S;. For
each source point j, S; = {ji, j2, ..., jn} contains all the
nodes in I'y. For ordering S;, let us assume that j, = j, then

the least squares problem
minlle, - Am,| , j=L-N (13)

is equivalent to solving the linear systems [24,25]
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The solution vectors m, =(0,-,m, ,m, ,-=-,m; ,0,+,0)"

of the N systems (14) set up the approximate inverse
preconditioner M.

The preceding approach for constructing the
approximate inverse preconditioner is particularly useful in
the context of the FMBEM where all the entries of the
system matrix A are not available and its sparse
approximation A, can be formed from the near-field part of
the matrix which is explicitly computed.

3.3 Flexible GMRES method

The GMRES solver with sparse approximate inverse
preconditioner performs very well [5,23,24]. At the same
time, in the context of FMBEM, it is possible to construct
efficient preconditioners, which also use the FMM [9]. One
such possibility would be to use GMRES itself to form a
preconditioner. However, such a preconditioner would be
essentially nonlinear, whereas the preconditioner for a
Krylov subspace solver such as GMRES must represent the
same linear operator in each iteration. A method that is free
from the preceding restriction is known as the flexible
GMRES (FGMRES) [26], which essentially consists of
inner-outer iterations. The outer iterations correspond to the
right-preconditioned flexible GMRES iterations. The inner
iterations correspond to the standard GMRES iterations,
which may be preconditioned.

Using the GMRES and FGMRES implementations of
Fraysse et al. [20,21], we have developed an interface
routine, which can be easily integrated with any BEM or
FMBEM implementation. This interface provides the option
of separate specification of all the parameters — tolerance,
maximum number of iterations, projection size etc. — and
user-specified routines for matrix-vector products for outer
FGMRES and inner GMRES iterations. Workspaces
required by FGMRES and GMRES are allocated
dynamically based on the projection size of the respective
Krylov subspaces.

Instead of using a fixed tolerance for the inner iterations,
one can use a variable tolerance linked to the state of
convergence of the outer FGMRES iteration [10]. Such a
scheme would ensure that the inner linear system is not
solved more accurately than what remains to be achieved in
the outer iteration. Giraud et al. [10] suggest the following
expression for the tolerance of the inner iteration at the k-th
FGMRES iteration

o0, = ol /(2] -

inner outer
where r, denotes residual at k-th iteration. Use of the
preceding relation would ensure that the inner GMRES
iterations adapt to the outer FGMRES scheme. The accuracy
requested for the inner scheme is relaxed with the
convergence of FGMRES iterations, which should improve
the computational efficiency of the solution process. The
outline of the FGMRES solver is given in the following box.




FLEXIBLE GMRES SOLVER
1. Set tolerance € and initial guess x,
2. begin FGMRES

3. Compute r, =b-Ax,; f= [|r0[|; v, =1,/ f.

4, fork=1,2,..., maxiter do // FGMRES iteration
5. /!l GMRES as right preconditioner for FGMRES
6. begin GMRES // Solve Az, = v, using GMRES
7. Compute €iner, ¥y = V,; B'=rs|; vi =r;/ 5"
8. for/=1,2,...,m do // GMRES iterations
9. z, =Mv, [/ Preconditioner for GURES
10. Generate basis, Hessenberg matrix, etc.
1. Exit if convergence detected

12. end for

13. end GMRES (return z,)

14, Generate Arnoldi basis, Hessenberg matrix etc.
15. Solve least squares problem

16. min ||ﬂel - ITIky|| for y

17. Exit if convergence is detected.

18.  end for

19. end FGMRES (return x=x,+Z,y)

4. Numerical Results

To assess the performance of the flexible GMRES method
for the solution of the boundary eclement system arising from
the new formulation, we consider its application to two
representative problems. The first problem is an exterior
problem, whereas the second one represents an interior
problem containing a subdomain. Following parameters
have been used for the flexible GMRES iteration:

¢ Size of the Krylov subspace, m = 50

e Tolerance for convergence, gy = 1.0d-06

e  Maximum number of iterations, maxiter = 1000
Parameters for the inner GMRES iterations are:

¢ Size of the Krylov subspace, m, = 20

¢ Tolerance for convergence, €ipger = 5.0d-02

e  Maximum number of iterations, maxiter2 = 20
For both problems, flexible GMRES runs were made with
and without preconditioned inner GMRES iterations.
However, the sparse approximate inverse preconditioner
constructed using a single layer of elements did not work.
Hence, we report the results obtained with un-
preconditioned inner GMRES.

4.1 Breathing sphere problem

We compute the acoustic field in the exterior region of a
sphere of radius 0.2 m. The surface of the sphere is vibrating
with a velocity v = 1.0 m/s. Exploiting the symmetry with
respect to the coordinate planes, we model 1/8th of the
sphere. Quadratic elements have been used for discretization
of the sphere surface (total number of elements = 288,
number of nodes = 868). Thus, the size of the boundary
element system, N = 868.

Results for sound pressure levels for different
frequencies are presented in Table 1. These are almost
identical to those obtained with the direct solver, and thus,

confirm the correctness of the flexible GMRES solver.
Table 2 lists the CPU time required for the solution of the
linear system with the direct solver and the flexible GMRES
method. For this small-size problem, the direct solver is
nearly twice as fast as the flexible GMRES.

Table 1: Breathing sphere problem: comparison of sound
pressure level computed with the flexible GMRES
and the direct solvers.

Frequency Sound pressure level
Direct solver Flexible GMRES
1 187.1004 187.1005
2 181.0797 181.0797
4 175.0584 175.0584
8 169.0352 169.0352
20 161.0579 161.0579

Table 2: Breathing sphere problem: comparison
of computation time for the flexible
GMRES and the direct solvers.

Frequency CPU Time in sec. (Iterations)
Direct solver Flexible GMRES
1 4.0625 8.15625 (25)
2 4.03125 7.53125 (23)
4 4.03125 7.84375 (24)
8 4.03125 7.21875 (22)
20 4.03125 6.59375 (20)

4.2 Interior problem

We compute the acoustic field in the interior region between
two concentric spheres. The radii of the inner and outer
spheres are 0.1 m and 0.25 m respectively. The surface of
the inner sphere is vibrating with a velocity v = 1.0 m/s. A
total of 288 quadratic elements have been used for
discretization of the spherical surfaces (number of nodes =
868). Thus, the size of the boundary element system, N =
868, which is the same as in the previous example.

Results for sound pressure levels for different frequencies
are presented in Table 3. Once again, FGMRES results are
identical to those obtained with the direct solver. Table 4
lists the CPU time required for the solution of the linear
system with the direct solver and the flexible GMRES. Once
again, , the direct solver is nearly twice as fast as the flexible
GMRES.

Table 3: Interior problem: comparison of sound
pressure level computed with the flexible GMRES
and the direct solvers.

Frequency Sound pressure level
Direct solver Flexible GMRES
1 106.9174 106.9174
2 110.3641 110.3641
4 132.4414 132.4414
8 138.4382 138.4382
20 121.7339 121.7339

Table 4: Interior problem: comparison
of computation time for the flexible
GMRES and the direct solvers.



Frequency CPU Time in sec. (Iterations)
Direct solver Flexible GMRES
1 3.9375 6.5937 (20)
2 3.8594 5.7031 (17)
4 3.8594 6.0000 (18)
8 3.7812 10.0468 (31)
20 3.7812 6.5937 (20)

For both of these small-size problems, the direct solver
is nearly twice as fast as the flexible GMRES. At the same
time, let us keep in mind that the present boundary element
implementation is based on the dense matrix-vector product
for GMRES iterations (inner as well as outer iterations).
Given the small number of iterations required by the flexible
GMRES, we can expect an order of magnitude improvement
in the computational efficiency the iterative solver if the
matrix-vector product can be computed using fast-multipole
expansions, in which we can use a higher order expansion
for accurate evaluation of the matrix-vector products in the
outer (FGMRES) iterations and a lower order (less accurate)
one in the inner (GMRES) iteration.

There are quite a few parameters and choices, which
may potentially affect the performance of the FGMRES
method. Size of the Krylov subspace is the most
fundamental parameter. Table 5 presents the effect of
variation of sizes of the Krylov subspaces of flexible
GMRES (m) and inner GMRES (m;) on the overall
performance of the FGMRES method for the second
problem. Results are included for a single frequency (trend
is very similar at other frequencies as well). For the given
value of N = 868, a very small value of either of the
parameters leads to slower convergence. A moderate value
of m (>20) together with m; = 15 would be the optimum
choice.

Table 5: Interior problem: performance of FGMRES
with varying sizes of Krylov subspaces.

FGMRES Iterations with size of inner GMRES
m m=5 | m=10| my=15 | my;=20
10 71 54 30 30
20 37 20 18 20
30 29 20 18 20
40 29 20 18 20
50 29 20 18 20

5. Concluding remarks

We have presented a flexible GMRES for boundary element
analysis of acoustic field problems based on a new boundary
integral formulation for higher order elements. Resulting
linear system is solved using an inner-outer GMRES
iterative scheme in which the outer iteration corresponds to
the flexible GMRES method. The inner iterations
correspond to the GMRES method and provide a right
preconditioner for the outer flexible GMRES iteration.
Numerical results have been obtained using fully assembled
boundary element system matrix. The present work
essentially forms the first step in FMBE implementation of

the new boundary element formulation for higher order
elements.
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