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This work presents a new adaptive node-cluster algorithm for Fast Multipole Method. In the
algorithm, we use rectangular boxes instead of cubes, subdivide a box based on its shape,
and tighten the child boxes at each subdivision step. More importantly, we determine the
number of expansion terms in multipole to local translations using the distance between the
two interaction boxes. Our method is tested using benchmark examples for three-
dimensional potential problems. The resuits obtained show that the new algorithm can solve
a problem with 100 thousands nodes in about 20 minutes, and runs nearly 3 times faster

than the standard algorithm for solving equation.
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1. Introduction

The Fast Multipole Method (FMM) [1] is regarded as one
of the top 10 algorithms of the 20th century. It is capable of
achieving fast multiplication of particular dense matrices
with vectors, and it allows for the reduction of memory
complexity. Generally, the FMM reduces the computational
cost for the matrix-vector multiplication from O(N?) to O(N),
where N is the total number of unknowns, thus making
possible scientific and engineering computations of large
scale problems.

The FMM uses multipole expansions (in term of series) to
approximate the effects of a distant group of particles
(elements in BEM or nodes in Hybrid Boundary Node
method [2]) on a local group, and translations (M2M, M2L
and L2L) between these expansions. Another aspect of the
FMM is that it uses a hierarchical decomposition of space to
define ever-larger groups as distances increase. In 3D cases,
an oct-tree decomposition is usually employed. The
multipole expansions and translations are orchestrated
within the tree in an effective way to obtain an algorithm
with O(N) asymptotic complexity.

The major obstacle in achieving reasonable efficiency with
high accuracy is the large number of the multipole to local
translations (M2L). To overcome this obstacle, Greengard
and Rokhlin [3] proposed a new diagonal form, which
reduces the M2L cost from O(p*) to O(p?), where p is the
number of terms in the truncated expansion series. Another
way for reducing the cost of translation operators is to lower
the number of M2L operations by using a new tree data
structure. Anderson [4] studied systematically how a spatial
data structure influences the performance of FMM, and
concluded that a binary, spatially balanced decomposition
tree with tight bounds is the best tree data structure for
FMM. Recently, Urago et al [5] implemented this idea in a
FMM simulation of electrostatic field, and gained an
efficiency improvement of two to three times faster than the
standard algorithm.

In this paper, we proposed a new adaptive node-cluster
algorithm for FMM. In our algorithm, we use rectangular
boxes instead of cubes, and subdivide a box according to its
shape. Therefore, the tree data structure in the new
algorithm is neither an oct-tree nor a binary tree. The
number of offspring of a parent box is dependent on the
shape of the box. We also tighten the child boxes at each
subdivision step, and generalize the Downward Pass
algorithm so that M2L translations can be performed among
the child boxes of a single parent box (brother boxes). More
importantly, we determine the value of p for the M2L
translations by the distance between the two interaction
boxes. A numerical example presented shows that the new
algorithm can solve a problem with 100 thousands nodes
using about 20 minutes, and it runs nearly 3 times faster than
the standard algorithm for solving equation.

2. Review of the Hybrid Boundary Node Method

In this paper, we combine the FMM with the Hybrid
Boundary Node Method (HdBNM) to demonstrate the
proposed algorithm. In this section, therefore, we give a
brief description of the HIBNM. The HdBNM is based on
the modified variational principle. With the 3-D steady state
heat conduction problem as an example, the independent
functions in the modified functional are the temperature ¢

in the domain, the boundary temperature § and boundary
normal flux 4 . Consider a domain Q enclosed by
I'=T,+I, with prescribed potential ¢ and normal flux

g on the boundary portions ",andT,, respectively. The
corresponding variational functional [T, is defined as

Mo = [,30.4.49- [ §@-$dr - [, gdar
where the boundary temperature ¢ satisfies the essential
boundary condition, i.e., =g on T .

Suppose that N nodes are well distributed on the bounding



surface of the domain. The temperature inside the domain is
then approximated using fundamental solutions as follows:
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At a boundary point, it follows that the normal flux is given
by
3 a¢; 3)
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where ¢/ is the fundamental solution with the source at a

node s; and x; are unknown parameters. For 3-D potential
problems, the fundamental solution can be written as

s _ 1
4= 4zr(Q,s,)
where Q is a field point, and /(Q, s;) is the distance between
Q and S;.

The boundary temperature 77 and the normal flux g are

)

interpolated by the Moving Least-square approximation
(MLS) [6] as follows:
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In the above equations, ®,(s) is the shape function of
MLS; &I and g, are nodal values of temperature and normal

flux, respectively.

With the local sub-domain around each node taken into
consideration, the stationary conditions can be obtained by
taking variations in Eq. (1) with respect to the independent
variables. This gives the following set of equations:

Ux=H¢ )
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where U, Q and H are defined as:
Uy = [ 4;(Q.5,,(@)ar ©
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where v, is a weight function, I', is a regularly shaped local
region around a given node s, in the parametric
representation space of the boundary surface. Therefore, the
integrals in Egs. (9), (10) and (11) can be calculated without
using boundary elements (for details refer to [6]).

For a well-posed problem, either ¢3, or g, is known at a

node s; on the boundary. Thus, Eqs. (7) and (8) can be
solved for the unknown parameters x. Then, by back-
substitution of x into Egs. (7) and (8), the boundary
unknowns are obtained for both temperature and normal flux
by solving Egs. (7) and (8) with H being the coefficient
matrix.

The coefficient matrices U and Q are dense and
unsymmetrical. It requires O(N?) memory to store them and
O(N*) CPU time to solve them if a direct solver is employed.
When we use an iterative solver, such as GMRES, the most
time-consuming part of computation will be the matrix-
vector multiplication in each iteration step. Considering an
iteration vector x* at the A-th step, the matrix-vector
multiplication at the k+1-th step is

=3 [ #3v,(@)xtar (12)
or )
,k+| ZJ‘ a¢1 v,(Q)xde (13)

where x**! is a temporary vector from which x**'is then
computed according to the iteration scheme of the solver.
Direct computation of Egs. (12) and (13) gives an O(N?)
algorithm. The FMM can be employed to reduce the
complexity to O(N).

3. Review of the fast multipole method

The FMM method was first introduced as a fast solution
method in astrophysics for simulation of N-body systems in
which the interactions between the bodies are gravitational.
Because of the computational analogy between the force
evaluation for the N-body problem and the matrix-vector
multiplication, the FMM is widely employed in conjunction
with iterative solvers to accelerate the solutions of elliptic
partial differential equations (PDEs) through the boundary
integral equation (BIE).

The FMM mainly uses three addition theorems which are
briefly explained below.

First Addition theorem: Define solid spherical harmonics
Ry (r)and S;'(r) as[7]

RI(r)=1,
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Here (r,a,p) is spherical coordinates of the point r;
P"(cosa) is the associated Lengendre function of integer
order m and degree n. Let r; and r, be two points with
spherical coordinates (7,4, /) and (r,,,, B,), respectively.
I follows that

) Z,,ZR (rl S (rz) Ir,|<|l'2|
|rl_r2| m m (14)
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In the above equation, the overhead bar means the complex
conjugate of a complex number.

Second Addition theorem: If r, and r, are two vectors such
that Ir.| > |r2|, then



Z Z R (r)S0 (r,) (15)

n'=0m'=—n’

Third Addition theorem: If r, and r, are two arbitrary
vectors, then

RI(r-1)=2 > RY(-1,)R7r(r) (16)

n'=0m'=-n'

Instead of treating interactions with each of the distant

nodes individually, the FMM computes cell-cell interactions.

Consider two cells C, and C,, which contain N, and N,
nodes, respectively. The computational complexity of a
standard algorithm for the mutual interactions between the

two groups is of order O(N_ x N,) (Figure la). In the cell-’

cell strategy, it is reduced to O( N, + N,) (Figure 1b).
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Figure 1. Interaction between two cells.

Substituting Eq. (4) into Eq. (12) and using the first
addition theorem, with the summation over the nodes
included in C,, we obtain

Ny
2 ., 4501 (@)xdT
17
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where the coefficients of multipole expansion M, (0,) is
defined by

M?(0,) = R"(Ops,)x, (18)

Using further the second addition theorem, Eq. (17)
becomes
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where the coefficients of local expansion L7.(O,) is given by
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Equation (20) is known as the muitipole to local (M2L)
translation, as it transforms the coefficients of multipole
expansion of C, to the coefficients of local expansion of C,.

Suppose that C, and C, are obtained by subdividing other

two larger cells C/ and C/, known as the parent cells of C,
and C,, respectively. Assume that C/ and C/} are still far

away from each other (see Figure 1d). We can then
transform the coefficients of multipole expansion of C, to

that of C/ (M2M) using the third addition theorem,
transform the coefficients of multipole expansion of C; to

local moments of C’ (M2L), and finally to coefficients of

local expansion of C, (L2L) using the third addition theorem
again. Therefore, Eq. (20) becomes
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The above process can be recursively repeated until the
root cell that contains the entire computational domain. In
the above process, the addition theorems are used to separate
the source and target points in the fundamental solution and
the pair of points in the solid spherical harmonics, so that the
coefficients of multipole expansion and local expansion are
related only to the individual cells. Therefore, these
coefficients can be calculated independently and can be



aggregated into ones to represent temperature due to ever
larger groups of nodes. Moreover, once calculated, they can
be reused for other cell-cell interactions.

4. Tree construction

In the previous section, we have described the process of
cell-cell interaction. We have seen that the two points in
two-point functions can be separated freely by addition
theorems. All the resulted coefficients of expansion can be
calculated independently. This allows for the freedom to
arrange these computations in order to achieve better
efficiency. In the FMM, actually, the cell-cell interaction is
not performed separately for each pair of well-separated
cells. An elaborate algorithm has been designed. This
algorithm is facilitated by a tree data structure, which
hierarchically decomposes the entire region into cells at
different levels. There is a tremendous flexibility in the
choice of tree data structure that could be used in the
algorithm. To enhance the accuracy of the computation, it is
important that the cells have roughly the same size in all
directions. It is also desirable that the cells chosen reflect the
geometry of the computational domain as accurately as
possible.

The standard FMM algorithm uses an oct-tree. The entire
computational domain is assumed to lie inside a cube, which
is referred as the root cube at level 0. The oct-tree is
constructed by recursively subdividing the cubes into eight
sub-cubes by splitting each cube at the geometrically central
point. The cubes at level /+1 are obtained from cubes at
level /, where the eight sub-cubes at level /+1 are considered
children of the cube at level /. The subdivision continues
until cubes contain less than a given number of particles
(boundary nodes in HIBNM). If a child cube does not
contain any node (that is, it is empty), it is deleted. A

childless cube is called a leaf. An example is shown in Fig. 2.

Level 0 (TOP)

level 1

Level n (LEAVES)
Figure 2. An oct-tree.

With the tree, the FMM consists of two basic steps:
upward pass and downwards pass. During the upward pass,
the coefficients of multipole expansion are summed from its
children using the M2M translation for each non-leaf cube.
In the downwards pass, the tree is traversed from the root to
leaves to compute the coefficients of local expansion. For
each Cube C, these coefficients are the sums of two parts.
Firstly, the L2L translation collects the coefficients of C’s
parent. Secondly, the M2L translation collects the
coefficients of multipole expansion of the cubes which are
the children of the neighbors of C’s parent but are not
adjacent to C (these cubes compose the interaction list of C).
Finally, for each leaf, the far interaction, which is evaluated
using the coefficients of local expansion at this cube is

combined with the near interaction evaluated by iterating
over all the source nodes in the neighborhood of the leaf
cube to obtain the entire sum in Eq. (12).

5. An adaptive tree

Usually, there are a large number of M2L translations for
each cube at every level. Therefore, the computational cost
of FMM is dominated by the M2L translation. One way to
reduce the number of M2L translations is to find a better
tree data structure [4,5]. The hypothesis is that a tree data
structure that matches the geometry of the computational
domain and has shallow depth will allow the computation to
be done with a smaller number of M2L translations. It is
obvious that the oct-tree does not necessarily match the
structures commonly used in engineering (a shell-like
structure or a slender object, for example) since the oct-tree
is constructed by choosing splitting planes oblivious to node
distribution. As the cost of tree construction is minor, it is
possible to use a tree data structure that is more expensive to
construct than the oct-tree and still achieve a net gain in
performance.

In this section, we attempt to establish an adaptive tree that
can match structures of arbitrary geometries. However, our
aim is not to reduce the number of M2L translation, but to
obtain smaller values of p in M2L translations under the
same precision by decomposing the computational domain
into more compact and well-separated cells. The adaptive
tree is based on the standard oct-tree, but differs in the
following aspects:

1. Instead of using cubes, the adaptive tree uses rectangular
boxes to decompose the computational domain. It is
believed that a rectangular box is more flexible in matching
structures.
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Figure 3. Subdivision of a box.

2. In contrast to the oct-tree, where subdivision of a cube is
oblivious to geometry, a box in the adaptive tree is split into
child boxes based on its shape. Without loss of generality,
let L), L,, and L; be the side lengths of a box in the three
coordinate directions, respectively, and suppose L, > L,> L;.
We subdivide the box according to the ratios between the
values of the side lengths. More precisely, we consider three
cases below:

(1) When L,/L,> 1.5, we split the box in the direction of
the longest side (see Figure 3a). Moreover, the number of
child boxes, », also depends on the ratio, L/L,. If L,/L,> 7.5,
n=8; else n=Int(L,/L;)+1, where Int( ) refers to the integer
part of a real number.



(2) When L,/L,< 1.5 and L,/L;> 1.5, we split the box in the
two directions shown in Figure 3b. The number of child
boxes is fixed to 4.

(3) When L,/L,< 1.5 and L,/L; < 1.5, we split the box in the
three directions shown in Figure 3c. The number of child
boxes is fixed to 8.

3. Boxes of the adaptive tree are tightened at each
subdivision step. Boxes with tightened bounds have been
investigated by Anderson [4], and are proven to be more

efficient in separating a node set into well-separated clusters.

The oct-tree chooses to subdivide the cubes when the cells
are split. This method is referred to as loose bounds. In
adaptive tree, on the other hand, we always use a smallest
box to enclose the cluster of boundary nodes. This is
referred to as tight bounds. When cells are split, the location
(and even the dimension) of the split depends upon the
bounding faces of the box. This means that the tight bound
and loose bound tree for the same set of nodes will have a
different structure. Note that when tight bounds are used, the
bounding box is computed before the cell is split. This is
different from using loose bounds for computing all of the
splits and then tightening the boxes.

4. A more generalized Downward Pass algorithm is
designed to allow M2L among the child boxes of a single
parent box. The standard algorithm always treats the child
boxes of a parent box as neighbors. This is no longer valid
for the adaptive tree (see Figure 3a).

5. In practical computation, the infinite series in Egs. (19-
23) are truncated after p terms. The error estimation of the
truncated series can be found in [3]. The standard algorithm
uses a fixed p for all series. In contrast, we will use adaptive
values of p for the series in all M2L translations. The value
is determined by

p=0.117p,, . / log(—2—) (24)
p-a
where p,,m is @ norm value; a is the maximum radius of the

two spheres that enclose the two interacting cells, and p is
the distance between the centers of the two boxes.

S. Test problems

The adaptive algorithm has been implemented in a code
written in C++ and tested with a 3D potential problem in a
slender rectangular box shown in Fig. 4. Dimensions are
given by a=2, b=2 and c=16. We use this example to
compare the efficiency between the oct-tree and the adaptive
tree. To this end, we first compute this model using the
standard algorithm and then the adaptive algorithm. For the
FMM, we set the maximum number of boundary nodes in a
leaf to be 60, and take both p in the standard algorithm and
Dnorm in the adaptive algorithm as 10. In GMRES, we
terminate the iteration when the relative error is less than
107*. All computations are carried out on the same desktop
computer with an Intel(R) Pentium(R) 4 CPU (1.99GHz).

To assess the accuracy of the method, we calculate the
relative error of nodal values of normal flux using the
following ‘global’ L; norm:

1 | I 2
eﬁ=m ;Z( i —qf ’) (25)

i=1

where g; is the normal flux at node i, and ||, is the
maximum value among the nodal values; » is the total
number of nodes; the superscripts (¢) and () refer to the
exact and numerical solutions, respectively.

Figure 4. Dimensions of the slender box.

The following field distribution is used as the exact
solution:
p=x>+y’ +2* =3yx* - 3xz* - 3zy? (26)

A Dirichlet problem is solved, where the essential
boundary conditions are imposed on all the surfaces
according to Eq. (19). We perform computations on the six
node arrangements: [10,80,10], [20,160, 20], [28, 224, 28],
[40,320,40] , [49,392,49] and [56,453,56] , where
[n,,n,,n] refers to nm,xn, , n.xn, and n,xn, evenly
spaced nodes on the surfaces perpendicular to the x, y and z
axes, respectively
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Figure 5. Number of M2L translation for different p.

The results obtained are summarized in Table 1. The first
and second columns of the table are the node arrangements
and the total number of nodes; the third, fourth and fifth
columns list the number of M2L translation (the total
number of cell-cell interactions), the number of leaves and
the depth of the tree. In the sixth, seventh and eighth
columns, the total times used for constructing the tree,
computing the near coefficients and solving the system
equations are listed, respectively. The relative errors of
nodal values for normal flux are presented in the ninth
column. The results show that, in all cases of node
arrangement, the adaptive algorithm has achieved equivalent
accuracy but higher efficiency. It uses slightly more CPU
time (in seconds) for constructing the tree. (Moreover, the
time used for tree construction are so small that it can be
ignored in the total computing time.) For computing near
coefficients, the CPU seconds used by both algorithms are
very close to each other. However, for solving equations, the
adaptive algorithm uses considerably fewer seconds, which
is nearly one third of that used by the standard algorithm.
The bottom row of the table shows that the new algorithm



can solve a problem with 100 thousands nodes using about
20 minutes.

From the third to fifth columns in Table 1, it is clear that
both trees have exactly the same number of leaves and
nearly same number of M2L translations for each node
arrangement, although the depth of the oct-tree is two levels
deeper than the adaptive tree. The reason for the better
efficiency of the adaptive tree is not the reduction of M2L
translation number, but the use of adaptive values of p for
M2L translation. This is in contrast to the binary tree
presented in [4, 5]. A plot of the M2L translation number
against p is given in Fig. 5. It is obvious that the value of p
needed by most of the M2L translations is merely 2.

6. Conclusions

In this paper, we have studied the performance of the
FMM which uses a novel tree data structure, namely an
adaptive tree. Instead of using cubes, the adaptive tree uses
rectangular boxes to cluster boundary nodes into groups, and
the boxes are split according their shapes in the process of
constructing the tree. Therefore, the new tree is more
flexible in matching the geometry (global and local) of the
computational domain. Most importantly, the number of
terms of the truncated series for M2L translations is
determined by the distance between the two interaction
boxes. The adaptive algorithm can provide a huge
improvement in efficiency over the standard oct-tree.

A numerical example is presented to study the
performance of the proposed algorithm. Results obtained
show that the adaptive algorithm leads to trees with more
compact cells and shallow depth, and runs significantly
faster than the standard oct-tree.
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Table 1. Results for standard and adaptive algorithm

Standard oct-tree

Node Distr.  DOFs  Leaves Npyeraw Depth Tiyee (8) Tooer () Tegu (S) err,

(10,10, 80] 3400 112 2080 6 <1 18 15 9.29x103
[20,20,160] 13600 440 24024 7 1 63 146 5.28x10°
[28,28,224] 26656 1120 33984 7 3 139 260 4.10x107
[40,40,320] 54400 1912 98136 8 6 227 773 3.32x10°
[49,49,392] 81634 3392 116736 8 30 495 968 2.03x10°
[56,56,453] 107744 3392 116736 8 35 765 1038  1.23x1073

Adaptive tree

Node Distr.  DOFs Leaves Nyerae: Depth Tyee (S) Teoer (8)  Togu (5) err,

(10,10, 80] 3460 112 2124 4 <1 14 8 9.23x107
[20,20,160] 13600 440 25144 5 2 60 42 530x103
[28,28,224] 26656 1120 37926 5 6 145 94 4.14x10°
[40,40,320) 54400 1912 92200 6 8 270 235  3.47x10°
[49,49,392] 81634 3392 114532 6 34 501 335 2.48x10?
[56,56,453] 107744 3392 116234 6 39 766 444  1.01x10°




