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This paper is concerned with the analysis of multi-crack problems in orthotropic elastic body by the
Fast Multipole Boundary Element Method (FM-BEM). First, based on the complex potential functions,
a hyper-singular boundary integral equation for crack problems is presented where a crack tip element is
introduced to improve the accuracy of the crack solution. Then, fast multipole method is adopted to reduce
the computational complexity of the boundary element method, for which the multipole moments of the
influence functions of the crack-tip element are presented. The validation of the computing efficiencies of
FM-BEM is carried out by numerical examples, which suggests that the size of the crack problem one can
solve will increase dramatically with the use of FMM. Also, the crack displacement solutions are calculated
successfully by FM-BEM for a large-scale example, which shows the applicability and the validity of this fast
multipole boundary element method in solving large-scale crack problems for two-dimensional orthotropic
materials.
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1. Introduction

It is well known that microcracks in brittle materials
not only lead to macrocrack initiation and final failure,
but also induce progressive damage. So, the study on
the crack problems is of significant importance in engi-
neering. For the fracture analysis, the boundary element
method is now a well established numerical technique.
The BEM is particularly efficient for crack problems due
to its ability to model high stress gradients like those oc-
curring near the crack tip, and due to simple remeshing
procedures to study crack propagation. Despite the vast
number of applications of the conventional BEM to the
isotropic problems, few works with the FM-BEM are
found in the analysis of the orthotropic crack problems
and even fewer works for the general anisotropic prob-
lems by FM-BEM. For isotropic materials, Fukui!) has
studied the two-dimensional, elastostatic problems with
a large number of cracks based on the FM-BEM, from
which the high efficiency of this method for large-scale
crack problems has been proved.

However, the analysis on the multi-crack problems for
orthotropic materials based on the FM-BEM, to the
authors’ knowledge, has not been considered. There-
fore, the objective of this paper is to study the ap-
plications of FM-BEM to the large scale crack prob-
lems in orthotropic materials, from which the possibil-
ity to solve large-scale crack problems based on BEM

is expected. Since we have presented a fast multi-
pole boundary element method for two-dimensional or-
thotropic materials?, and numerical examples did show
the high efficiency of this method in solving the large-
scale problem for orthotropic materials, this work could
be regarded as an extension of Fukui’s work.!?)

2. 2-D Orthotropic Elasticity
2.1 Boundary value problem

For two-dimensional orthotropic elastic materials, the
strain-displacement relation, the equlibrium equation
and the constitutive equation are given as:

1
€ij = 5 (uij +uj,:) (1)
0ij; +Xi =0 (2)
TEN
Oij = Cij€kl c2 ¢ 0 (3)
0 0 22
or
" o0
€ij = Si; Okl s32 s33 O (4)
0 0 2si2

where €;;, u;, 0;; and X; are strain, displacement, stress
and body force, respectively. cf} and sf} are the elastic

— 183 —



and compliance tensors, respectively.

Consider a boundary-value problem with multi-cracks
where the domain and its boundary are expressed by B
and 0B = 9B; + 8Ba, respectively. S1,S5,...,Sy are
the crack face boundaries. Then, based on the basic
equations above, the crack problem can be described as

cf}uk,lj +X;=0 (in B)

u; = U (on 0By)
(on 9B3) (5)
(on Sl, Sz, ey SM)

§; = a,]n, =8
8i = 04N =0

where n; is the unit outward normal vector on 8B. n¥
are the unit outward normal vectors on the both side
surfaces of the crack, and n; = nj = —n; is defined for
the reference. s; is the traction vector on the boundary.
4; and §; are the given vectors on the boundary.

2.2 Solutions based on complex functions®

Assume that the body forces are absent. Then, based
on the Airy’s stress function analysis, the governing
equations for two-dimensional orthotropic elasticity can
be derived as

) 8y 0%
55218 - 4511216 3a_+2(s + 2512 505
oy R,
-4812 —— 555+ Rihend 557 =0 (6)

where a bar denotes the complex conjugate. 1s the
stress function, and 2z = x; + ixz5. Parameters S are
given as

1
S}} = 4 (31] + 322 +43 23%%)

1
SE=8y== (s N+ 83 —4si3 - 23%?)

4

1

511 = 312 = (3%} - Sgg)
1
Si3 = i (st + 533 + 253 )

A solution of (6) of the form (2 ++Z) exists provided
the complex constant <y is a root of the characteristic
equation of (6). Then, since 9 is a real function, the
general solution of (6) can be expressed as

PY(2) = ¢(21) + B(Z1) + x(22) + X(Z2) (7)

where 2, = 2 + 7,Z (@ = 1,2), while ¢ and  are two
analytical functions. For orthotropic bodies, v; and 7
are either complex conjugates or real.

If we make o2 be the two roots of the following equa-
tion

s32at —2(s3) + 25120 + 511 =0 (8)
the characteristic roots ; and -2 can be obtained by

a)‘—l a _1+’}’)‘
ay+1’ A 11—

M= ()‘ = 152) (9)

Then, based on (7), the displacement and the stress

fields in orthotropic materials can be derived as follows

D =u; +iuz = §1¢'(21) + ;1% (1)

+82x'(22) + p2X (Z2) (10)
® =011 — 022 + 2i012 = —4vi¢" (1) — 49 (Zl)
—473x" (22) — 4X"(%2) (11)

O =01, + 022 = 41" (z1) + 4715”(71)
+472x" (22) + 472X" (Z2) (12)

where 6, and p, are parameters associated with the
orthotropic material constants which are given as

h=04+m)b—(1-m)b
02 = (1+72)61 — (1 — 72)B2
Pi=QQ4+m)B+(1—m)A
P2=(1+7)61+(1—2)06

where 3y = s3} — s2202 (A = 1,2), which is valid only

for orthotropic bodies.

(13)

3. Boundary Element Method
3.1 Boundary integral equations

From Somigliana’s identity, the displacement solu-
tions of the crack problem (5) can be expressed as

Cij(®)uj(x) = uix) +/ Gij(z,y)s;(y) dS,
OB
- / Si5(z, w)u;(y) dS,
éB
- ; /S i, w)lusl @) ds, (14)

where C;; is a parameter depending on the location of
point z. If the boundary is smooth at the point z, C;;
is determined as follows: C;; = d;; whenz € B; C;; =0
when = ¢ B+0B; When € 8B, C;; = 8;;/2. U; is the
term due to the body force. [u;] = u;” —u ] is the crack
opening displacement. The kernels G;; and S;; are the
fundamental solution and the associated fundamental
solution, respectively, which can be expressed in terms
of complex functions?.

From (14), we can get the expression for the traction
vectors on the crack surface as

O=n,a +T"uJ(a:)+/ S,,(a: v)s;(y)dS,
—/ Usj(z, y)u;(y) dS,
aB

—zpf /S Usj(e, )[us])(v) dS,  (15)

where a is the initial stress. S;;(x,y) is the adjoint

of Si; (a: y) The kernels S;;(z,y) and Uy;(x,y) can be
derived by

S'ij (:B, y) = Tial:cskj(m’y)

(16)

where T3 is the operator to define the traction vectors

on the boundary point  through the displacement vec-
tors. The kernel U;;(zx, ) is hyper-singular when z = y,

T35Gri(z,y), Uij(z,y) =
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Since ¢5'(z — ¢) = [1/(z — {))(V/2), we have
%" (2 = Q) = [=1/(z = O*)(V/2m) (29)

Then, we can get the integration of functions ¢° " and

f(s) as

/ 65" (2 — C1)f(s) ds,
FE

v a1 Erva vm
\/an(w— e a—ay) 0

Similarly, we can get the integration of x5 with f (8).
Then, the complex stress fields due to a crack-tip ele-
ment become

/ o5 (,y) dsy = Uj/("{l ~ 03 + 2i0],) dsy
E

= —4[yiVEki(21) + VE1(Z1)
+Y2Wka(22) + Wka(22)] (31)

/ 0%(z,y) ds, = U; / (0, + 0dy) dsy
E E

=4mVki(z1) + 7, Vk1(Z1)
+72Wks(22) + 5. Wka(22)] (32)

where ®° and ©F are the complex stress components
due to the associated fundamental solution, respectively.
ka(z) is defined by

2 1 O
ka(2)= V ard (Qf ?i—\/; z\/: (33)

3.5 Kernel U;; and influence function due to
crack-tip element

As discussed above, the hyper-singular kernel
Uij(x,y) is the traction field at = due to the double
layer kernel, which can be expressed by

T(:z:,y) =T +il = Ulj(m,y)Uj + iUzj((L', y)Uj

1
=5 (6% + 9°77) (34)
where V7 is defined by v* = n{+in§ at . Then, without

in details, the influence function of D;;(x,y) due to a
crack-tip element can be expressed as

/ (@, ) f(s) ds,
E

-U; [ /E Urs(@)f () dsy+i [ Uas (@)1 () ds,,]
=2 [Ulz’thl (21) - T/'TWI (21)
+U5 72 Wka(22) — D5 Wka(Z2) (35)
where vZ is defined by vZ = v* — v,7*. From (35), the
influence functions due to the crack tip element can be

obtained, from which the multi-crcak boundary value
probelms can be solved numerically.

4. Fast Multipole Method

In this paper, the Fast Multipole Method (FMM) is
adopted to reduce the computational complexity of the
multi-crack problems. To implement this fast method,
the multipole expansion, the local expansion and the
translation formulas are necessary, which were discussed
in detail in Fukui’s work? and omitted here. In this
section only the multipole moment due to the crack-tip
element will be discussed.

For the elasic orthotropic materials, the general form
of the multipole expansion of functions ¢° and ¢° can
be given as?

1
¢S(z1—Cl)='2; [ M010g21+; - ] (36)
X5 (22 = (o) = % [“No log zo + nz::l z—gl (37)

Based on (36) and (37), we can get the multipole mo-
ments of the associated fundamental solution as

MS=—v, MmS=-Y& (38)
n n
n
N§=-Ww, NS5= —% (39)

Consider a crack tip element [0, b], as shown in Fig.3.

X

................

0
Fig.3 Crack tip element and multipole point

Origin O is at the crack tip. Then we have

Vs/a=/Ca/ba (40)

By integrating the multipole coefficients M5 and N7
through the crack-tip element, e.g.,

15 = [ M) ads,
E
VE (M
= M d 41
2 [ MivGa (a1)
we can get the multipole moments MS and N5 of the
crack tip element due to the double layer kernel as

WV, e VY

M§ = by, M?S= 42

0 3n ! " n('n + 3)7‘] ( )

NS = sz, NS = ;\/ZZV_,,;H (43)
37y n(n+ 3)m
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where 7, = € + v,e7*®. After the multipole mo-
ments of the crack tip element has been derived, the
fast multipole method can be implemented in BEM for

orthotropic large-scale crack problems.

5. Validation of Computing Efficiencies

In this section, we will give two numerical examples
to examine the computing efficiencies of the fast multi-
pole boundary element method for the orthotropic crack
problems. Here, we consider relatively simple problems
using, possibly, more elements than what would be nec-
essary for engineering purpose, since the objective of this
study is to test the performance of the proposed method
rather than to solve the practical problems. For exam-
ple, the maximum number of the boundary elements in
the examples is chosen to be about 126,000.

In the following examples, the number of terms in
the multipole expansions is truncated at n = 25. Also,
the maximum number of boundary elements in a leaf is
chosen to be 8. For these two examples, the material
constants are adopted as follows 2)

E] = E, E2/E1 = 2, Vi = 0.25, G]z/E] =04

The first example is, as shown in Fig.4, about a finite
crack considered in an infinite orthotropic elastic body.
Its orientation angle is 45° with respect to z; axis, and
its half length is a = 1.

X

Fig.4 An inclined finite crack in an infinite or-
thotropic body

The second example is about 3 x 3 finite cracks con-
sidered in an infinite orthotropic elastic body, as shown
in Fig.5. Every crack has the same orientation angle,
i.e. 45° with respect to x, axis, and has the same half
length @ = 1. The distance between the centres of two
neighbouring cracks is assumed to be 4.

The Jacobi method was adopted as the iteration solver
in this paper. The numeber of iterations for these two
examples is 517 and 981, respectively. For these two
examples, the numerical results for the computing time
and the used memory are shown in Fig.6 and Fig.7 ,
respectively.

Fig.6 plots the computing time per iteration versus
the number of elements for these two examples, from
which we can see that, the computing time is in pro-

s

/ /
/ S x

oA S

Fig.5 3 x 3 inclined finite cracks in an infinite or-
thotropic body

10° T
® For one crack A
A For 3x3 cracks A
102 -
m A
[
Z Ao
5 N
8 10
5 ae
3 N
1 .
A
A ®
[ ]
10° 10° 10t 10° 10

Number of elements

Fig.6 Computing time per iteration versus the num-
ber of elements

portion to the number of the elements when the fast
multipole method is adopted.

Fig.7 plots the used memory versus the number of
elements for these two examples, from which we can see
that, the used memory is also in proportion to the num-
ber of the elements as expected when the number of
elements is larger than about 1000. From the results
of these two examples, we can see that, both the com-
puting time and the used memory are in proportion to
the number of the elements as expected, from which the
validation of the computing efficiencies of the presented
FMBEM for orthotropic large-scale crack problems can
be proved.

6. Computation of Crack Solutions

After the high efficiency of the fast multipole bound-
ary element method for orthotropic crack problems has
been proved, we will give a large-scale crack example to
compute the crack solutions in this section.

The example is about 10 x 10 cracks in an infinite
elastic orthotropic body, as shown in Fig.8. Assume
that all the cracks have the same half-length, i.e., a = 1,
and have the same inclined angle, i.e., 60° with respect
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103
® For one crack
A For 3x3 cracks
&
~ a
g 10?
- a
g .
g a
E .
3 r
210 =
[}
&
la [ ]
p
- ¢
I
102 10° 104 103 106

Number of elements

Fig.7 Used memory versus the number of boundary
elements

to the x; axis. The distance between the centers of two
neighbouring cracks is 3. The unidirectional tensile load
in the x5 direction is considered, and the same material
constants as those in the last section are adopted.The
number of boundry elements on each crack is 100, i.e.,
the total number of the elements in this example is
10,000. For this example, the displacement solutions
on all the crack faces have been calculated successfully
and are shown in Fig.9.

Xy A

\j

NN N NN NN NN N
NN N NN INN NN N
NN N NN NN N
NN N N NINNNN N
NN N N N NN N
NN N NN NN N
NN NN N INNNN N
NN N N NINNNN N
NN N N N NN NN N
NN N N I N

Fig.8 10 x 10 finite cracks in an infinite orthotropic
body

7. Conclusions

Based on the analysis above, the work in this paper

can be summarized as follows:

1. For two-dimensional orthotropic materials, a hyper-
singular boundary integral equation for crack prob-
lems has been presented based on the complex po-
tential functions, in which a crack tip element is
specially introduced to improve the accuracy of the
crack solution.
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Fig.9 Displacement solutions on the 10 x 10 finite

crack faces

2. FMM (fast multipole method) is adopted to re-

duce the computational complexity of BEM. The
multipole moments of the influence functions of
the crack-tip element have been presented. After
discretizing the hyper-singular boundary integral
equation by the collocation method, it can be solved
numerically in connection with FMM.

. Numerical results show that both the computa-

tional time and the used memory are in propor-
tion to the number of the boundary elements, from
which the validation of the computing efficiencies
of FM-BEM has been proved. It can be concluded
that the FM-BEM can decrease the computational
complexities efficiently as expected, which suggests
that the size of the crack problem one can solve will
increase dramatically with the use of FMM.

. The crack solutions have been calculated success-

fully by FM-BEM for a large-scale crack example,
which shows the applicability and the validity of
this fast multipole boundary element method for
large-scale crack problems in orthotropic materials.
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