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This paper presents a two dimensional boundary element transient analysis in an anisotropic
piezoelectric solid with a finite crack. An electric field is produced if the piezoelectric solid
changes material dimensions and conversely, it deforms if an electric field is applied. Mechanical
motion and electric flow are both considered and are coupled in this problem. Extended or
generalized traction (elastic traction and electric displacement) integral equation is applied on
one side of the crack. The time domain fundamental solutions obtained by Wang and Zhang for
anisotropic piezoelectric solids using Radon transform is the basis for this boundary integral
formulation. The formulation and methodology are similar to the 2D analysis for the anisotropic
solid [1]. The fundamental solutions are also separated into the static singular and dynamic
regular parts [2]. The static singular part of the BEM is further developed to a form that can be
easily adopted in writing the computer code with the help of Stroh’s formalism. Details for the
static singular part (or the elastostatic part) are shown by Wang[3]. Crack opening
displacements and relative electric potentials are the BIEs primary unknowns. The presence of
two partial derivatives in the static part makes Galerkin method the viable method. Galerkin
method is used to regularize the hypersingularity. Thus, double spatial integrals are needed as
well as the integral with respect to time and the integral over a unit circle (from the
fundamental solution). The static part and the dynamic part integrations are treated differently.
For the static part, the integral over the unit circle is determined in explicit form by using
residues and the other integrals are analytically performed. For the dynamic part, integrations
in time and space are evaluated analytically while the integral over the unit circle is evaluated
numerically.
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1. Introduction

Piezoelectric materials are materials that produce an
electrical field when the material changes dimension as a result
of imposed mechanical force. Conversely, applied electrical field
will cause the material to change dimensions. Due to this
inherent coupling, piezoelectric materials are widely used and
are still finding new important applications in both engineering
and medical fields such as transducers and other
electromechanical devices. Piezoelectric crystals are also very
popular as materials for vibration control in structures. However,
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these crystals or ceramics are brittle and the presence of crack
cannot be prevented either during production or during its
service life. Thus, the study of cracks in piezoelectric material is
gaining popularity. Furthermore, most piezoelectric materials
are not isotropic. Most published researches are static analysis
Denda and Lua [5], Pan [6] and Rajapakse and Xu [7] to name a
few. Denda et al. [8] developed a 2-D time-harmonic BEM for
solids of general anisotropy. Shindo et al.[9] formulated an
analytical dynamic solution for orthotropic piezoelectric ceramic.
To the authors’ knowledge, no research has been done on time



domain boundary element analysis for general anisotropic
piezoelectric solids.

Similar to all boundary element models, the main difficulty
is getting the proper fundamental solutions. Fortunately for this
case, Wang and Zhang [2] derived the explicit form of the
fundamental solutions for general anisotropic piezoelectric solids.

In this paper, we present a time domain boundary element
method (BEM) for fracture analysis of two dimensional
anisotropic piezoelectric solid. The objectives of this study are to
check the validity of the fundamental solutions and to develop a
numerical model for dynamic fracture analysis in general
anisotropic piezoelectric solids. Mechanical motion and electric
flow are both considered and are coupled in this problem. The
generalized traction (elastic traction and electric displacement)
integral equation is applied on one side of the crack and only one
side of the crack is discretized. The time domain fundamental
solutions obtained by Wang and Zhang for anisotropic
piezoelectric solids using Radon transform is the basis for this
boundary integral formulation. The formulation and
methodology are similar to the 2D analysis for the anisotropic
solid [1,4]. The fundamental solutions are first decomposed to the
static singular part and to the dynamic part [2,4]. Stroh’s
formalism is then applied to the static singular part, thus,
making it easier to be adopted into a computer code. Details for
the static singular part (or the elastostatic part) are shown by
Wangl[3]. Crack opening displacements and relative electric
potentials are the BIEs primary unknowns. Due to the presence
of two partial derivatives in the static part, Galerkin method is
used to regularize the hypersingularity. Thus, double spatial
integrals are needed as well as the integral with respect to time
and the integral over a unit circle (from the fundamental
solution). The static part and the dynamic part integrations are
treated differently. For the static part, the integral over the unit
circle is determined in explicit form by using residues and the
other integrals are analytically performed. For the dynamic part,
integrations in time and space are evaluated analytically while
the integral over the unit circle is evaluated numerically.
Numerical examples are shown and the effects of the
piezoelectricity are discussed.

2. Problem statement

Consider a two dimensional homogeneous, infinite and
linearly anisotropic piezoelectric solid. The solid is modeled
assuming a crack of arbitrary shape. Fig 1. shows the crack
model with an applied impact load. The following defines the
generalized displacements U, , generalized stresses X,
generalized body forces F, and generalized elasticity
tensor E,;,
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where U, are the displacements, ¢ is the electric potential ,
O, are the stress, D, are the electric displacement, J; are
the body forces, ¢ is the electric charge density, ..z is the
elasticity tensor, €.s is the piezoelectric tensor and finally
K, is the dielectric permittivity tensor. Using these
definitions, the generalized equations of motion and the
generalized constitutive equations are written as

Zal.a = _F; + pa;lﬁl 4 (5)
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where O represents the mass density and &, is the
generalized Kronecker delta and is defined by
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Fig. 1 Crack Model

Throughout this paper, a comma after a quantity denotes
partial derivative with respect to the spatial variables while a dot
appearing on the top of a quantity denotes partial derivative
with respect to time. The summation convention rule over
repeated indices is used. Also, lower case roman suffixes take
values of 1, 2, and 3 while capital roman suffixes take values of 1,
2, 8, and 4. Greek suffixes have values of 1 and 2 only.

If we substitute Eq.(6) into Eq. (5) and assume zero
generalized body forces, the generalized or extended equations of
motion are now in terms of the displacement components



{T,(8,,8,)- p5,8}}U, (x,)=0 ®

where
[,00,,0,)=E,, ;450,04 )
is the generalized Cristoffel tensor and &, represents

partial derivative.

Zero initial conditions are assumed and on the crack-faces,
traction-free boundary conditions are considered. Furthermore,
the electric boundary condition on the crack face is assumed to be
of the impermeable type. Although studies by Sosa (10] have
found out that the boundary in crack faces is actually permeable,
the impermeable assumption is used in this paper due to
mathematical simplicity. Further studies will be done to check
the effect of this assumption.

3. Boundary element equations

Consider a two dimensional elastodynamic problem in a
homogeneous anisotropic elastic solid with a finite crack as
shown in Fig 1. Using traction free conditions and impermeable
electric boundary condition on the crack face, the generalized
representation integral for the generalized crack displacement
components can be written as:

Ug(p,0)=Ug(y,1)
—LH"{ [(x'y),e(x);t]*AU,((x,t)dx

(10

where x and y are the source and observation point respectively,
S is the crack surface and H, is the generalized traction
fundamental solution. * stands for the Riemann convolution.
Since the BEM equation leads to a degenerate formulation, the
traction boundary integral equation will be used and can be
written as:

(11)

()= LW,, [x-»:i1]*AU, (x,0)dx yeS

where 7;"denotes generalized traction component of the incident
wave, AU, are the crack opening displacements (CODs) and
the relative electric potential difference or the generalized
CODs (GCODs), #,, is the derivative of the stress fundamental
solution. The fundamental solution derived by Wang and Zhang
[2] is used to obtain #,, by applying the traction operators
twice.

4. Fundamental solutions
The generalized fundamental solution is defined as the
solution of the following equations

{T41(8),8,)- 6,02} G, (x:) = =6;,6(x)5(1) (12)

where G, (x;n)=0 for <0 and T, (8,,0,)=E,;.8,9, .

G.. (x,t) 1is the displacement field in the xi-direction due to
impulsive mechanical pointloadat x =0 in the xm-direction.

G,.(x 1) is the electric potential field due to an implusive
mechanical point load at x=0 in xm-direction. G, (xr) is
the displacement field in the xi-direction due to impulsive
electrical load atx=0. G, (x,s) is the electric potential field
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due to impulsive electrical pointloadat x=0.

Wang and Zhang (2] using Radon transform derived explicit
expressions of the fundamental solutions. Due to the inverse
Radon transform the fundamental solution includes an
integrand over a unit circle. The integral expressions are given
by

Gy (% l)_H(t) L Py _dn
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where Ty (n,m)=Epp,ngn, .

The fundamental solution can be reformulated into two
parts, namely static and regular part by applying integration by
parts. The singular part corresponds to the elastostatic
fundamental solution which has a closed form solution. The
higher order fundamental solution can also be separated into its
singular static and regular dynamic parts. W, is first
expressed in time convolution form where f(f) is an arbitrary
function.

W, (x-p0)* f(1)=W3(x-p)f(0)+

where W is the static hypersingular term and

Wr(x-ptyx f(o) (16)
Wy
the dynamic regular term. The fundamental solution in

is

separated form is given by
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unit normal vector. The singular part can be further reduced to a
closed form expression. The static singular part of the
displacement fundamental solution is transformed into an
explicit expression by using the residue theorem.

s _ l & Ape (1)
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where z, =x -y +7(x5,—»,), D()=0 with Im(n,)>0 , and
L=4ifall four 7, are distinct. The other terms are given by



Cor = _ﬁ b
and 4, (7)=adj[T,, (L7)], D(n)=det[T,(.7)] ,whereboth
are polynomial functions of order six and eight, respectively. If
I (Ln) iswelldefined, D(7) cannot be zeroforreal 77.

The higher order static part can also be reduced to closed
form expressions by application of Stroh’s formalism [1]. The
static part of higher order fundamental solution can be written
as

l T (n)log|n,|dn (19)
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Applying Stroh formalism twice, the static part is given as
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5. Numerical implementation

In solving the boundary integral equation (11), Galerkin
procedure is adopted to reduce the hypersingularity in the static
part. Eq. (11) is recasted into a weighted integral sense by
multiplying the weighing function, and then integrating over the
observation point (field point).
[ )T nnrds, = [ (ypas, %%a%

L g (24)
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The partial derivatives are then moved to the weight function
and the GCODs using integration by parts twice and with the
assumption that the GCODs are zero in the crack tip, which
results to

L& wTrpnds, = I LaAu e
(25)
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+ [ dryds, [ (x- yit)* AU, (x.0)dS,
The time stepping method is a process used to approximate the
values at a finite number of times intervals. Thus, the boundary
integral equation is then approximated by linear algebraic
system of equations which can be solved using numerical
method. The proper selection of the shape functions could make
the problem easier to deal with. Similarly, the boundary of the
crack is discretized in a finite number of points and a spatial
shape function is chosen. The variables or fields in the boundary
are approximated as

N
AU, (x,0) = f 2 & el [au,]” (26)

g=l n=l|

where ¢/(x) are the spatial shape function and ¢f(¢?) the
temporal shape function. 4] (x) are linear shape functions
for this problem while the temporal shape function is
chosen as:
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The second derivative of the temporal shape function is
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Substitution of Eqns (26)-(28) into Eq. (25) leads to a
system of linear algebraic equations as follows
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The time convolution of Eq. (32) can be evaluated analytically
by using Eq. (28) and is given as

Wi ey 0410 = [ WiGx- 000 -o)dr
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Since simple linear spatial shape functions are chosen, the
integrands are evaluated analytically in time and space. Only
the regular part with integral over a unit circle needs to be
computed numerically.

6. Dynamic stress intensity factor

Stress intensity factors are used to define the magnitude of
the singular stress and displacement. The dynamic stress
intensity factors for anisotropic solids can be computed directly
and are related to the CODs [1] by:

it i
— (s -5n)
55,

K)_Va k{ﬁ("""')} R"{s.—-is,(”"”')} ST

K| 22D Rc{sl_—isz (Slqz_%)} Rc{

where D is the determinant of the coefficient matrix, ¥ and
v are the displacements parallel and normal to the crack near
the crack-tip, 7 is the distance from the crack tip,
and s,,9,,p, are determined from the material compliance
matrix,



6. Numerical results

Consider a crack of finite length 2a in an infinite linearly
elastic solid subjected to an incident transient dilatational waves
directed normal to the crack such that

uy = -_::0("2 +et)H (x,+c) (35)

g =22l (x,+ct)H(x, +¢pt)
Cnky

where ¢, = \/"_nT is the compression wave velocity,
Tp=cpteh / K,, is the piezoelectrically stiffened elastic
constant, P, is a constant with dimension stress, and
H(t) is the Heaviside step function. Sample materials are
taken as PZT-6B and BaTiOs ceramics with engineering
constants listed in Table 1.

work. The dynamic stress intensity factor has a steep curve
before reaching the peak and then decreases in magnitude until
it reaches the steady state static solution. On closer examination,
difference in values near the peak can be seen between the two
models. The analytical solution has a higher value for the
dynamic overshoot. It should be noted that the analytical
solution considered the permeable electric boundary condition.
This could acoount for the difference in values. For the PZT-6B,
both models have the same time where the peak occurs (at about
2.25). While for the BaTiOs the peak occurs at 2.5 for the
analytical one and 2.25 for the present work.

—e— Tan et al. anisotropic model |
o oo Thisworkwith ¢, =0

Table1.  Material properties of piezoelectric ceramics. 1§
PZT-6B | BaTiO3 4 ct/a=025 1
Elastic stiffness ¢, 168 150 Au. 12 o
(GPa) TR 6 2 | N A 0.20
“n %o 0.15
c 271 23 L ¥, S ;
= 06 0.10
€12 60 84 04 000000066
Piezoelectric coefficients e, -0.9 -4.35 ) booce000060000006 -5
(Chw?) e 71 175 ¥
2 -1 -0.5 0 05 1
€5 4.6 114 x, / a
Dielectric constants P 36 34 Fig 2. Time variations of Aw, /U, for a crack and
(100 C/Vm) . 57 a normal incidence of dilatational wave in PZT-6B
Ky, . 112

To check the new formulation’s accuracy, the piezoelectric
coefficients are first assumed to be zero, thus decoupling the
effects of mechanical and electrical part. Fig. 2 shows the time
variations of Awu,/u, for the PZT-6B. u, is the displacement
amplitude of the incident wave. The crack is subdivided into 40

elements of equal size. ¢,At/a=0.05is taken as the time step.

Plane strain is assumed. The present work is compared to the
previous general anisotropic model (see Tan et al. [1]). The solid
lines with the dot indicate the results obtained from Tan et al.
anisotropic model while the unshaded circles are those of the
present time-domain BEM with the piezoelectric coefficients set
at zero. Both methods show the same values of crack opening
displacements.

To examine the effects of the coupling of electrical and
mechanical parts, the dynamic stress intensity factor is
determined. Figs. 3 and 4 show the result for PZT-6B and
BaTiOs, respectively. The stress intensity factors are normalized
with the division by p,v7za. Results are then compared to the
results of Shindo et al. [8].

The analytical method of Shindo et.al and the present work
shows the normal dynamic SIF curve. The line curves are for the
analytical model while the triangular plots are for the present

N

1.6p

0.5} ———— Shindo et.al. |
A A A A this work

; é 10
ct/a

Fig. 3. Normalized dynamic stress intensity factor

for PZT-6B

It should also be noted that the present time-domain BEM
uses the same explicit time-stepping scheme to that of our
previous work. It is considered conditionally stable. The time
step should be chosen properly so that the BEM be stable and
would have quality results. From our numerical experiences, the
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time step should be just enough for the smallest wave velocity to
traverse one element. All in all, the results of the present work
show good agreement with the analytical ones.

1.5p
1t
K|,
———— Shindo et.al. |
‘ A A A A this work
% 2 4 e 8 10
ct/a
Fig.4 Normalized dynamic stress intensity factor
for BaTiOs
7. Summary

A 2D time-domain traction BEM for piezoelectric solids of
general anisotropy with cracks is presented in this paper. The
methodology is similar to our previous work [1) except for the
coupling between the mechanical motion and electrical flow. The
method uses the time domain fundamental solutions for
anisotropic piezoelectric solids derived by Wang and Zhang [2].
This method uses the collocation method for the time
discretization and the Galerkin method for space. The use of
linear temporal and spatial shape functions makes analytical
integration possible. Only the integral over the unit circle needs
to be done numerically. The accuracy of the present work is
verified by showing numerical examples.

For extension of the present work, elliptical cavities would
be considered and the development of the displacement time
domain BEM is in progress. The displacement time domain
BEM can be used for the finite domain problem. The traction
time domain BEM can also be extended to solve the finite
domain problem. The next step is to check the effect of the
permeability of the electrical boundary condition by coupling
with the governing equations for the vacuum. The study of the
effect of the change in the electrical boundary condition by
changing the thickness of the elliptical cavity is of interest. For
very thin elliptical cavity, we should be able to approximate the
effect of the electrical boundary conditions on the crack problem.
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