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This paper presents a method to simulate the flaw signal, which is scattered by the side-drilled
hole in the solid, in the ultrasonic immersion test. The equation of the linear time-shift invariant
system, the multi-Gaussian beam model and the quasi boundary element method are applied to
the numerical model. To compare with the experiment result, reflected wave by the flat surface

of a specimen is used as a reference signal to determine the system efficiency factor. Simulation
and experimental results are compared to verify the accuracy of the model.
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1. Introduction

Ultrasonic non-destructive evaluation is widely conducted in
steel industries for controlling quality of the products. For
precise testing, ultrasonic immersion testing is used in automatic
fashions to eliminate the need of couplants.
ultrasonic detection of very small defects such as inclusions is
very difficult with current ultrasonic testing. Therefore, the
possibility to detect small flaws and the requirement of
ultrasonic testing conditions should be studied in both
experimental and theoretical works.

However,

Wave propagation and reflection in ultrasonic immersion
testing are complicated due to the presence of fluid-solid
interface. However, using the multi-Gaussian beam model®.2 ,
the wave field in solid can be efficiently simulated without
complicated numerical procedure. Applying the linear time-shift
invariant system®@, the ultrasonic measurement model with the
same condition as the experiment could be obtained.

There are some researches on flaw detection using the
combination of the linear time-shift invariant system and
multi-Gaussian beam model“®, In those papers, the scattered
wave from flaw is calculated in approximation way. Kitahara et
al. and Nakahata et al studied mechanisms of scattered waves
using immersion testing by applying the multi-Gaussian beam

model to the two dimensional BEM of flaws® ?, However, in both
papers, the experimental result is not shown.

The objectives of this study are, therefore, to develop the
numerical model of the ultrasonic immersion testing and to
verify the accuracy of the model by comparing the analytical
results to the experimental results. The multi-Gaussian beam
model is utilized for simulating the incidence wave field radiated
from the immersion transducer. In order to observe the
scattering of waves, the quasi two dimensional BEM® is applied
to analyze the flaw model. Finally, the beam model is applied
again to obtain the scattered wave spectrum in frequency
domain. The waveform in time domain is determined by
applying the inverse Fourier transform to the results in
frequency domain. This simulated waveform is then compared to
measured waveform from experiment to verify the accuracy of
the model.

2. Multi-Gaussian Beam Model

The time harmonic pressure wave in fluid generated by the
transducer is expressed using the multi-Gaussian beam model®
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Fig. 1 Coordinate for multi-Gaussian beam model

Pan(X' @)= prevy(w)

JdetGP(0) .

. B k x'
det G (x)) exp{ik )

E T ?wi-_ﬁ u%

10

24,

n=|

(6))

where gis the density of fluid, ¢ is the wave speed of fluid, 4is
the wave number in fluid, v(«) is the velocity distribution on the
surface of transducer, and
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The terms A4, and B, are complex constants defined by Wen
and Breazeale® as shown in Table 1 and d, is the radius of a
transducer element. The references coordinate shows in Fig, 1.

When the Gaussian pressure wave transmits through the
fluid-solid interface, the longitudinal and transverse waves are
generated by the mode conversion. Using Snell's Law, the
transmitted ray path for L and T waves in the solid can be
defined. The displacement field in the solid due to the Gaussian

pressure wave is given by
Table 1 Complex constants of Gaussian beam

n A, B,

1 11.428+0.95175i 4.0697+0.22726i
2 0.06002-0.08013i 1.1531-20.933i
3 -4.2743-8.5562i 4.4608+5.12681
4 1.6576+2.70151 4.3521+14.997i
5 -5.0418+3.2488i 4.5443+10.003i
6 1.1227-0.68854i 3.8478+20.078i
7 -1.0106-0.26955i 2.5280-10.310i
8 -2.5974+3.2202i 3.3197-4.8008i
9 -0.14840-0.31193i 1.9002-15.820i
10 -0.20850-0.23851i 2.6340+25.009i

Fig. 2 The 3D-incident and 2D-scattered model
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where 7% is the transmission coefficient of a plane wave
propagated from fluid to solid, Dy is the distance between the
interface and the transmitting transducer and 4 is the
polarization direction.

Equation (5) is used as an incidence wave for quasi
two-dimensional analysis shown in the next section.

3. Quasi Two-Dimensional Scattered Model
In a homogeneous elastic solid D, the displacement of the
ultrasonic wave satisfies the equation of motion

Cyuth y (%, )+ paru,(x,0)=0,x € D @

where p is the density and  is frequency. For an isotropic
material, Gy is given by

Cyu = A8, 8 + (8,8, + 8,5, ) ®

where A and u are the Lamé constants.

As shown in Fig. 2, the three-dimensional incident wave is
applied to a scattering problem of infinite cylindrical hole in solid.
The spatial Fourier transform with respect to x;, where x; is
taken in the longitudinal direction of the cylindrical hole, is
defined by
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where X=(x; ,x,).
Applying the spatial Fourier transform to the equation of

motion yields
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Here, the original three-dimensional problem is transformed
to a two dimensional problem. The boundary integral can be

written as

1
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where superscript M and ‘in’ refer to solid material and
incident wave, respectively. By applying the Fourier transform to
the three dimensional fundamental solution, the fundamental
solution Ug(X,Y,&;, @) can be obtained as follows®
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where H, ((,l)( ) is the Hankel function of the zeroth order of the
first kind, and
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where 4 and 4 are the transverse and longitudinal wave
numbers defined by k7 = @/or and & = alc;, respectively. In Eq.
(12), My is the following differential operator
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where, the summation with the Greek subscripts takes the

values of 1 and 2 only. The traction kernel is defined by
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Assuming the traction free boundary condition, the boundary
integral equation in Eq. (11) is discretized and solved
numerically for the boundary displacement on S. After
determining the boundary displacement, the scattered
displacement in solid is obtained as
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Introducing the farfield approximation, the scattered
displacement in the solid can be reduced to
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Applying the inverse Fourier transform to Eq. (18), the scattered
displacement in three-dimensional space is obtained.
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4. Linear Time-Shift Invariant (LTT) System

Figure 3 illustrates the immersion ultrasonic testing model
based on the linear time-shift invariant system. The voltage
output V from a flaw, shown in oscilloscope, can be written
according to the LTI system® as

V(o) = p(@)M(@)F, (@)C, (@)T,, ()

A@)T (@)C, (@)F, () (5)

where A a) is the system efficiency factor, M) is the attenuation
in fluid and solid, P(«) is the wave propagation, ({&) is the beam
pattern of transducer, T(«) is a transmission coefficient at
fluid-solid interface, and A(e) is the scattered wave from flaw. In
this paper, the attenuation term M @) is neglected.
4.1, Incident wave

In Eq. (25), the term of P{&)Ci{)T;{a) is considered as the
incidence wave in the solid just before hitting the hole, which is
expressed by Eq. (5). The components of the incident a (=L, T)
wave can then be written as
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4.2. Scattering from flaw

" is used as an input to the quasi two dimensional scattering
model. After the numerical analysis, the scattered wave result
from quasi two dimensional BEM is obtained. However, when
an original three dimensional problem is considered, the far-field
scattered displacement is written as
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Comparing Eq. (24) to Eq. (30), Q% is expressed in terms of

the solution of quasi two dimensional BEM analysis 4% as
follows
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If the incidence wave were a plane wave with unit amplitude,

then Q%) had corresponding to 44w, where 44@ is the

component of A (e for the scattered Swave.
In this study, however, the incident wave is given by the
multi-Gaussian beam model as shown in Eq. (29). Thus the

radiation pattern %, given by Eq. (31) can be written by
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4.3. Back propagation

Finally, P,. (0)Cy. (9T (@) in Eq. (25) is the back propagation.
The components of the back propagation (3= L,T) wave can be
written as

P? () =exp{ik, D, +ik,x,} (33)
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Here, the average of scattered wave over the transducer surface
is included. The equation for the simulation voltage output @)
of the scattered wave from side-drilled hole can be written as

V(0) = Q;,(@)P, (0)C, (@), (@)
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a=L,T

36)

4.4. Reference Model and System Efficiency Factor

Figure 4 shows the reference experimental setup. The JIS-
standard calibration block Al (STB-A1) is used. The waveform of
the echo reflected from the surface of STB-Al is acquired as a
reference signal. Applying Fourier transform, the wave spectrum

Vaof the reference experiment is obtained.
For this reference experimental setup, the LTI system
equation can be written as

Ve (@) = B(@)F, (@)C,,(®)R C, (0)F, (@) @7

where R is the reflection coefficient of a plane wave at the
fluid-solid interface calculated analytically. Considering at a
center line of probe, the simulation of reflected wave on the
surface of STB-Al is
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Here, the term of Eq. (38 is the correction factor
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corresponding to the average of scattered wave over the received
transducer surface. The exponential term of C (¢) is ignored. The
system efficiency factor can be calculated by

_ V(@)
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To compare the simulation result to the experiment result, Eq.
(36) is multiplied by the system efficiency factor Aa).

5. Comparison between Experiment and Simulation

The transducer used in this experiment is the Panametrics
V306, which has the center frequency of 2.25 MHz, and the
element diameter is 13 mm. The specimen used in this study is a
standard calibration block Al (STB-Al), with the side-drilled
hole of 1.5 mm-diameter at 15 mm-depth from the top surface, as
shown in Fig. 5. Both ends of side-drilled hole are attached with
the water resistant adhesive tapes to protect the hole from
water. The material properties of STB-A1 are ¢, = 5900 m/s, cr =
3246 /s and density = 7900 kg/m3. The wave velocity of water is
1480 mv/s and density is 1000 kg/m3.

Figure 6 shows the reference waveform, which is reflected
from the front surface of STB-Al, and its spectrum. The
simulation result of flaw echo scattered wave is shown in Fig.
7(a). The result of the experiment is shown in Fig. 7(b). Here, the
echo from the front surface of specimen is also shown. It should
be noted that the flaw echo obtained from the simulation is in a
very good agreement with that obtained from the real
experiment in terms of waveform and amplitude.
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Fig. 6 The experimental reference signal reflected from the
front surface of specimen (D= 94 mm)

6. Summary

In this paper, the numerical model of the flaw signal in the
immersion test is developed based on the multi-Gaussian beam
model and BEM. The main advantage of this model is to predict
the flaw signal wave, which will appear on oscilloscope.

The simulation and experiment of ultrasonic detection of the
side-drilled hole in STB-Al were conducted in order to verify
efficiency and accuracy of the proposed model. The result of this
model shows a very good accuracy and reliability.

In the further work, the proposed model will be used to study
the possibility of the ultrasonic detection of small defects.
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