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This paper is concerned with a new boundary element method of analysis for 2-
dimensional half-space acoustic problems, excluding influence of fictitious eigenfrequen-
cies. It is assumed that the acoustic field is governed by the Helmholtz equation. In
solving the external acoustic problem by the usual boundary integral equation, the ac-
curacy of the numerical solution is violated at fictitious eigenfrequencies of the interior
problem. The present paper proposes a new boundary element method to circumvent
the fictitious eigenfrequency problem by using dual boundary integral equation for nodal
points of the boundary element. Through numerical computation of several examples it
is demonstrated that the proposed BEM is effective to avoid the fictitious eigenfrequency
problem.
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This work presents a fast implementation of the multi-domain hybrid boundary node
method (HdBNM) for numerical solution of Laplace’s equation. The preconditioned
GMRES is employed to solve the overall system of equations. At each iteration step of the
GMRES, the matrix-vector multiplication is split into smaller scale ones at the subdomain
level, and accelerated by the fast multipole method independently within individual
subdomains. The computed matrix-vector products at the subdomain level are then
assembled into an overall vector using the equilibrium and continuity conditions at the
interfaces. Our method is tested by two benchmark examples for three-dimensional
potential problems, and high accuracy and efficiency are observed.

Keywords: meshless method; hybrid boundary node method; multi-domain formulation;

fast multipole method

1. Introduction

Meshless techniques to obtain numerical solutions for
PDEs without resorting to an element frame have been
popular  throughout the computational mechanics
community for the past two decades. This is because, with
mesh-based techniques such as the finite element method
(FEM) or the boundary element method (BEM), the task of
mesh generation for complex geometries is often time-
consuming and prone to errors, and the difficulties with re-
meshing in problems involving moving boundaries, large
deformations or crack propagation are crucial. Many
meshless methods have been proposed so far. Some of the
methods are the element free Galerkin method (EFG) [1],
the meshless local Petrov-Galerkin (MLPG) approach [2],
the boundary node method (BNM) [3] and the hybrid
boundary node method (HdBNM) [4-6]. Among these
methods, the HIBNM is a truly meshless boundary-only
method, which combines the MLS approximation scheme
with the hybrid displacement variational formulation. It not
only has the advantage of reducing the spatial dimensions by
one as BEM, but also does not require any cells either for
interpolation of the solution variables or for the boundary
integration. In fact, the HdBNM requires only discrete nodes
located on the surface of the domain and its parametric
representation. As the parametric representation of created
geometry is used in most of CAD packages, it should be
possible to exploit their Open Architecture features, and
automatically obtain required coefficients (representation).

However, like in the traditional BEM, the system matrix of
the HABNM is dense and unsymmetrical. The computational
time and memory requirement for directly factoring such
system increase respectively with O(N®) and O(N?), where N
is the total number of degrees of freedom. In order to obtain

an efficient algorithm not only in terms of human-labor
costs (where mesh generation is avoided) but also in terms
of computer costs, we have recently combined the HdBNM
with the fast multipole method (FMM) [7-10]. The
combined approach (here called FM-HdBNM) reduces both
the memory requirement and the total execution count to
O(N). Therefore, it is promising for large scale computations.
In this paper, we further implement the FMM techniques in
a multi-domain formulation of the HIBNM.

Multi-domain formulations are employed when the entire
domain under consideration is governed by individual
differential equations in different parts and/or constructed of
different materials. Besides, in the case of a domain with
complicated boundary profile or parallel computation, the
domain may be decomposed for better computational
efficiency. In a multi-domain solver, the original domain is
divided into a finite number of sub-domains, and in each of
them the full integral representation formula is applied. At
the common interfaces between the adjacent subdomains,
the corresponding full matching conditions are enforced.
How to satisfy the continuity and equilibrium conditions at
the interfaces is one of the important aspects of
implementation for a multi-domain algorithm. There are
mainly two methods in the literature: the standard multi-
domain method [11] and the domain decomposition method
[12]. In the standard multi-domain method, the discretized
equations corresponding to the subdomains are assembled
into a system of equations according the boundary and
interface conditions. While the matrices that arise in the
single domain formulation are fully populated, the multi-
domain formulation leads to overall matrix equations with a
sparse blocked structure. In the domain decomposition
method, the interface conditions are assumed and then the
subdomain problems are solved independently. The
modification of the interface condition is usually iterative



using different methodologies, as the Schwarz Neumann-
Neumann and Schwarz Dirichlet-Neumann methods.
Repetition of the iteration process is continued until
convergence. The- domain decomposition method allows
different type of discretization methods (e.g. BEM and FEM)
to be used for a numerical solution of the individual
subdomains and coupling between them without accessing
to the source codes of the methods. However, it has some
relevant parameters to be chosen and the optimal values for
these parameters are usually problem-dependent. This
arbitrariness represents a disadvantage of the method. In the
present paper, we adopt the standard multi-domain method,
and make full use of the resultant sparsity of the matrix
equations during the solution process. As the sparse
structure of the matrix is directly related to the ordering of
blocks occurring in the matrix, we use the ordering strategy
suggested by Kane [11] to obtain an optimal blocks structure.
The preconditioned restarted GMRES is employed to solve
the system equations. At each step of the iterations of
GMRES, the matrix-vector multiplication is accelerated by
the FMM at the subdomain level. Therefore, the FM-
HABNM code for single domain problem can be used
directly. The algorithm is implemented through a code
written in C++. In the code, an interface class is devised to
deal with the equilibrium and continuity conditions at the
interfaces. Two benchmark examples of three-dimensional
potential problems are investigated. Numerical results
demonstrate the accuracy and efficiency of the proposed
approach.

2. Muiti-domain formulation of HIBNM

In this section, we will derive a multi-domain formulation
for solving 3D potential problems. The formulation is
obtained by assembling the equations for each single domain
into an overall system of equations using the continuity and
equilibrium relations along the interfaces between the
subdomains. The HdBNM formulation for solving single
domain problems has been given in reference [5]. For the
sake of simplicity and to allow for a clear presentation of the
multi-dlomain formulation, we consider here three
subdomains.

The hybrid boundary node method is based on a modified
variational principle, in which there are three independent
variables, namely:

- temperature within the domain, ¢ ;
- boundary temperature, ¢ ;
- boundary normal heat flux, §.

Suppose further that N nodes are randomly distributed on
the bounding surface of subdomain-1. The temperature
within the domain is approximated using fundamental
solutions as follows:

N
¢=,Z¢i‘x/ 1)
=1
and hence at a boundary point, the normal flux is given by

& Of;
=Y 2
q K,; P ()

where ¢; is the fundamental solution with the source at a

node s; k; is the heat conductivity and x, are unknown

parameters. For 3-D potential problems, the fundamental
solution can be written as

gol 1
e x, 4nr(Q,s,) 3)

where Q is a field point; 7(Q, s;) is the distance between Q
and s,

The boundary temperature and normal heat flux are
interpolated by moving least square (MLS) approximation

[5]:
#(s)=D.®,(s)4, @)

4(s)= Zq)l ()4, %)

1=l

In the foregoing equations, @,(s) is the shape function of
MLS approximation; ¢, and §, are nodal values of

temperature and normal flux, respectively.

Using the modified functional variational principle in all
local-regions around the boundary nodes, the following set
of HIBNM equations can be written for subdomain-1:

Ux=H¢ (6)
Qx=Hq )

In the above equations, the elements of matrices U, Q and
H are given by

U= | #(@.s,)v,(@)dT ®)
09, (0,s,

0= I, Sy @ ®

(10)

Hy = [ ®/(@w,(Q)dr

where v, is a weight function and s, is a boundary point,
T, is a regularly shaped local region around a given node s,
in the parametric representation space of the boundary
surface. (For full details of HIBNM refer to [5]).

To assemble equations (5) and (6) into an overall system of
equation for the entire domain later, we sort the boundary
nodes into three groups: group 1 containing nodes that
belong exclusively in subdomain-1, group 2 containing
nodes that are on the interface with subdomain-2, and group
3 containing nodes on the interface with subdomain-3.
Correspondingly, equations (5) and (6) are partitioned into
blocked matrix equations as

v, v, v.](x) [Hi)
Uy Uy Uy {xp={Hé;¢ 3))
Uy Un Un (8] | Hig)
lll Qllz Qlla- rxll‘ Hll‘;:
;I Q;z Qzl'a «x;>=<H;¢i'2> (12)
W O Qa‘s_ _x;‘ LH;‘EJ

where superscript 1 stands for the subdomain-1; the



subscripts 1, 2, 3 denote that the prescribed quantities are
associated with the nodes in groups 1, 2, 3, respectively. The
double subscript ij, i, j=1, 2, 3, is used to convey that the
pair of nodes s; and s, in equations (8) and (9), by which the
prescribed coefficient matrix blocks are computed, belong to
group i and j, respectively.

Similarly, for subdomain-2 we have

v: vy udl(x}) [Hid
Ui UL UL |$xii={HI$ (13)
U, Uy Uazs_ Lxsz Hf&i
¢ o o[« (mi:
2 2 2 2 212
0, 0, Oyl|ix:t=H,q5¢ (14)
_szl 05 Qszs_ \xsz H;é;
and for subdomain-3,
v v, vl](x) |Hé
Uy, Uy Uy l|yx=1H$5¢ (15)
_U33| U;, Usss_ kxg H;"Ji
[0, o, o]« (H4i)
le Qzaz Q233 <x§ =‘H23‘i; (16)
_Q;; 0;, Qszs_ x; \H:‘;gd

At the interface between subdomain-i and j, both the

temperature and heat flux must be continuous, i.e.,
(o1} ={¢:}
{0/} =-{a}

)
(18)

If we use the same set of nodes distributed on an interface
in the discretization for both domains that share the interface,
the following relationship exists:

() ={H)

Using the continuity conditions, equations (11)-(16) can be
assembled into an overall matrix equation:

(19)

(4, 4, 4, 0o o o o o o |[x] (&
Uy Uy Uy U Uy U 0 0 0 ||x 0
u, U, U; 0 0 0o U UL, UL ||x 0
0, 0, & o 2, &, 0 0 o0 (x| |0
0 0 0 A A, A, 0 0 0 |Sxip=id}
0 0 0 Uy Uy Uy Uy Uy -Uyllix 0
0 0, 0 0 0 o 0 & 0|~ 0
0 0 0 Q0 @ O & & & x| |0
|0 0 0 o 0 0 4, 4, 4 ]|(x d;

20

where [A;] and {d,' } are formed by merging [U;] and
(2], {Hfﬁﬁ} and {H/§.}, respectively, according to the
known boundary conditions. For degrees of freedom with

prescribed temperature, the related elements in {H,-'if} are

i

selected into {d, } , and the corresponding rows of [U,-;]are

selected into [A,j] ; otherwise, elements in { H,'é:} are
selected into {d,-' } , and the corresponding rows in [Q,;] are
selected into [A;]

The set of equation (20) is solved for the unknown
parameters x, then, by back-substitution into equations (11)-
(16), the boundary unknowns are obtained either on the
interfaces or the external boundary surfaces.

The blocked matrix in equation (20) is actually hyper-
matrix with smaller matrices as entries. The zero blocks in
equation (20) give the equation a very beneficial
characteristic, i.e. sparsity. To simply send the whole matrix
to an equation-solving subroutine would be extremely
inefficient. Techniques for banded or variable-banded
matrix equation solving are also ineffective because of the
lack of symmetry. To capitalize on the special structure of
these sparse blocked matrices, we choose an iterative solver,
i.e. GMRES, to solve it in this study. However, for the
conventional GMRES, both the computational time and
memory size required to store the coefficient matrix are
proportional to n°, where n is the total number of unknowns
in the overall system of equations. This limits the method to
relatively small scale problems. Accelerating the equation
solution process with Fast Multipole techniques is necessary
for solving large scale problems.

3. Accelerating multi-domain HdBNM with FMM

The FMM is called one of the top 10 algorithms of the
20th century. It is an algorithm for achieving fast products
of particular dense matrices with vectors, and allows
reduction of memory complexity in the methods based on
Green’s functions or fundamental solutions. The FMM uses
multipole expansions (in term of series) to approximate the
effects of a distant group of particles (nodes in HIBNM) on
a local group, and thus achieves faster summation. Another
aspect of FMM is that it uses a hierarchical decomposition
of space to define ever-larger groups as distances increase.
For 3D problems, an oct-tree decomposition is usually
employed. We have implemented the FMM techniques in
the HABNM for single domain problems. In this paper, we
will focus on how to accelerate the solution of equation (20).

When an iterative solver is employed to solve a linear
system, the most time-consuming part of the solution
process is the calculation of the matrix-vector product at
each iteration step. Taking an iteration vector into account
and considering equations (11)-(16), we suppose that

Ul‘l U li2 Uy (| ¢1'
U;l Uéz Ués x5 p =3¢ 2n
_U;I U, Us||x 4
and
Qxl 1 Q:z Q;s x q
0, O Q1% =14 (22)
& @, O ](x 7

where ¢ and 4 are result vectors of the products. Then, the



overall matrix-vector product in equation (20) can be
obtained by

(4, 4, 4, 0 0o o o 0o o0 ](x'] [glorq
U, U, Uy WU, UL Uy, 0 0 o0 (|x) |-
U, U, U, o 0 o U, U, -U||x ¢-4
o 0. 0 9 0 5 0 0 0 (|x? n+q

o 0 o oA, AL 0 0 0 [KxPr=<glorg’

0o 0 0 U U322 U 323 Uy Uy -U 233 x;z # -6
o 0 & O 0 0 9 o 2|« g

0 0 0 Q)z| QJzz Qszs Q23| Qzlz Q:J x? qlz +q;
L0 0 0 0 0 0 4 A4 4 |l% ¢,’orq3"
(23)

The computational costs for the right hand side of equation
(23) are trivial, and can be ignored. The summations in
equations (21) and (22) can be accelerated by FMM within
each single subdomain independently. In the above solution
procedure, the coefficient matrix in equation (20) needs
never be formed, and its use is purely symbolic. The
matrix-vector product in equation (20) is divided into
smaller scale ones at the subdomain level, thus making the
fullest use of the sparsity pattern of the coefficient matrix, as
consideration of the empty blocks is completely avoided.

The accelerated summation process by FMM for the sums
in equations (21) and (22) is exactly the same as that in the
FM-HdBNM for single domain problems. We create a
hierarchical space decomposition tree for each subdomain.
All the computer subroutines for single domain problems
can be exploited here directly. We have described the
algorithm of FM-HdBNM for single domain problems in
references [6]. To avoid repetition, we will not discuss it
here again. The reader is referred to the paper [6] for further
details.

On the implementation of the above algorithm, we remark
the following two aspects:

1. The sparsity pattern (population of the blocks) of the
coefficient matrix in equation (20) has a severe impact on
the condition number of the matrix, and thus on the solution
procedure especially when an iterative equation solver is
employed. The sparsity pattern of the system equation is
determined by the ordering of unknowns. In order that the
nonempty blocks in the overall system are as close to the
main diagonal as possible, we use the particular ordering
suggested by Kane [11]. The order is determined by listing
all permutations of two subdomains as shown below:

11 12 13 21° 22 23 31" 32" 33

For permutations where the first digit is less than the
second digit, blocks of potential are generated; otherwise,
blocks of normal flux are generated. The permutations
associated with blocks of normal flux are shown with an
asterisk in the above list.

2. The selection of a good preconditioner for the GMRES
is crucial for its convergence and computing efficiency. It is
even more so with the multi-domain formulation, since the
population of the overall equation matrix is no longer
diagonally dominated. In this study as a primary step, we
just simply use a block diagonal preconditioner that is
obtained by inversing the diagonal blocked sub-matrices.

These sub-matrices are the further smaller diagonal sub-
blocks of the main diagonal blocked matrices, namely A4;,,
U,, Usls’ lex > A222, Uazs» Q:Jx , @5 and A333 , in equation (20).
The sub-blocks are formed according to the leaves of the
hierarchical decomposition tree. More precisely, if both the
nodes s; and s, in equation (8) or (9) reside in the same leaf,
the entry U, or @, is selected into the corresponding sub-
block. This preconditioner has been proposed by Nishida
and Hayami [9] and adopted by Yoshida and Nishimura [10]
for solving single-domain problems with FMM. This
preconditioner may not be efficient for multi-domain
problems. Developing other forms of preconditioners is an
important subject of future research.

4. Test problems

The proposed techniques have been implemented in a code
written in C++ and tested with two benchmark problems.
All computations are carried out on the same desktop
computer with an Intel(R) Pentium(R) 4 CPU (1.99GHz).
Concerning the FMM and GMRES, we truncate all the
infinite expansions after 10 terms, set the maximum number
of boundary nodes in a leaf box to be 60, and terminate the
iteration when the relative error is less than 10, To assess
the accuracy of the method, we calculate the relative error of
nodal values of temperature using the following ‘global’ L,
norm:

1 1 )2

=g =3 (! -u™) (24)
max i=l

where u; represents nodal values of temperature ¢ or normal

flux g, and p{__ is the maximum value among the nodal

values; n is the total number of nodes; the superscripts (e)
and (n) refer to the exact and numerical solutions,
respectively.
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Figure 1. Geometry of the domain consisting of three cubes.

4.1 Three cubes with different material properties

A simple heat conduction problem is first considered. The
domain of the problem consists of three equal cubes with
different thermal conductivities (Figure 1). The side length
of the cubes is a=1m. The used heat conductivities for
cubes D, D, and D; are k, =1.0 W/mK, x, =3.0 W/mK and
Ky =2.0 W/mK, respectively. A uniform temperature of

200K is imposed at the left end face of cube D, and 100K at
the right end face of cube D;. All other outer surfaces are



prescribed as heat flux free. For this problem, the following
exact solution is available:

(1600-600xy)/11, -1<y<0
#=1{(1600-200xy)11, 0<y<l (25)
(1700-300xy)/11, 1<y<2

We naturally treat each cube as a subdomain and perform
computations on five node arrangements, namely, 10x10,
20x20 , 40x40 , 80x80 and 160x160 nodes uniformly
distributed at each square surface of a subdomain. Results
are summarized in Tables 1, in which the first and second
columns list the number of nodes used on one square surface
and the total number of nodes; the third and fourth columns
list the number of iterations of GMRES and the total times
for solving the system equations. In fifth and sixth columns,
the relative errors of nodal values of temperature and normal
flux are presented.

Table 1. Results for the domain consisting of three cubes

kxk DOFs Its T(s) =~ €Memp err s
10x10 | 1800 18 313 1.2x10°  7.6x103
20x20 | 7200 21 381 5.2x10°% 3.6x103
40x40 | 28800 24 2461 2.7x10° 1.8x10°
80x80 | 115200 32 13578 1.8x10® 1.3x10°

160x160 | 460800 44 72799 8.9x10% 1.2x10
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Figure 2. Temperature distribution along the central line.

Numerical results obtained for the temperature with
10x10 nodes on each square face, together with the exact
solutions, along the central line from (0.5, -1.0, 0.5) to (0.5,
2.0, 0.5) are presented in Figure 2. The tabulated results
show that our algorithm is capable of performing large-scale
multi-domain computations. Highly accurate results are
obtained with a small number of boundary nodes, and
improved with increasing number of nodes used. The high
accuracy is also demonstrated in Figure 2, where the
numerical results agree excellently with the exact solution.

4.2 A cylinder of uniform material

The second example deals with a thick cylinder of uniform
material (Figure 3). Dimensions are given as a=5, b=7

and h=5. We use this example to compare the efficiencies
between the multi-domain and single domain solution
strategies under the circumstance that FMM is employed to
accelerate the equation solution. For this purpose, we first
model the cylinder as a single domain (Figure 3a), and then
decompose it into four subdomains (Figure 3b) and solve the
problem by the multi-domain model. The following field
distribution is used as the exact solution:

p=x"+y’+2°-3yx* —3xz* -3’ (26)

J

(a) Single domain model

(b) Four subdomains model

Figure 3. Modeling of the hollow cylinder.

Potential boundary conditions are imposed on the inner
and outer cylindrical surfaces and normal flux boundary
conditions on the top and bottom faces, according to
equation (26). Comparative computations are performed on
five pairs of nodal arrangements for the two models. The
total numbers of degrees of freedom for these nodal
arrangements are listed in the first and fifth columns in
Table 2 for the multi- and single-domain models,
respectively. In each pair of nodal arrangements, for
comparability, we discretize the outer surfaces in both
models with the same set of nodes. Table 2 shows that the
numbers of degrees of freedom for the multi-domain model
are slightly bigger than the single-domain model. This
difference is due to the additional unknowns that are
introduced into the overall problem by the subdomain
interfaces in the multi-domain model.

The second and sixth columns in Table 2 list the CPU
seconds for computing the equation coefficients by the
single- and multi-domain models, respectively. The third
and seventh columns indicate the time used for solving the
overall system of equations. In the fourth and eighth



columns, the relative errors of nodal values of potential are
presented. It is seen that, in all cases of nodal arrangement,
the single-domain model used slightly less CPU seconds
both for computing coefficients and for solving equations
than its multi-domain counterpart, while the results are
equally accurate. This observation is in contrast to that made
for the conventional multi-domain BEM [11], where both
the accuracy and efficiency can be dramatically improved by
the multi-domain techniques in modeling slender objects.
The reason for this may be that, in the FMM context, only
the coefficients for pairs of nodes in the near field are
directly computed, and thus the required floating-point
operation counts to build the coefficient matrix and to solve
the equation are of order O(r) rather than O(#%) in the
conventional multi-domain BEM.

Table 2. Results for the thick cylinder problem

Multi-domain model

DOFs Tooes (5) Togu (5) err,
11888 711 1167 5.1x10%
47448 4127 6418 1.6x10*
106688 7753 12516 9.9x10°
189608 22482 34743 7.1x10°
296208 33889 65317 4.1x10°

Single-domain model

DOFs Teoer () Togu (5) err,
10288 530 803 5.7x10%
41048 3906 5203 1.6x10™
92288 8065 8937 9.5x10°
164008 20297 22378 6.8x10°
256208 33373 43899 5.4x10°

5. Conclusions

The FMM techniques have been implemented in a multi-
domain formulation of the HIBNM for numerical solution
of Laplace’s equation. The matrix-vector multiplication
during the equation solution process is split into smaller
scale ones at the subdomain level, and is accelerated by the
FMM independently within individual subdomains.

Two numerical examples are presented to study the
performance of the proposed method. High accuracy and
efficiency have been demonstrated. It is clear that the
method is suitable for analyzing large-scale multi-domain
problems such as modeling of composites. In the
conventional BEM, multi-domain strategies are usually used
to get better computational efficiency for long slender
objects. For the multi-domain FM-HdBNM, however, this is
no longer feasible, because the FMM has already reduced
the computational scale to nearly linear complexity.

The block diagonal preconditioner based on the leaves in
the FMM tree structure may not be efficient for multi-
domain formulation, because the coefficient matrix in the
multi-domain equation is no longer diagonally dominated.
Developing other forms of preconditioner in the FMM
context, such as the sparse approximate inverse
preconditioner [13], is necessary for performing large-scale

computations of practical interest. This is an important
subject of future research.
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