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From a intuitive perspective, exact boundary representation emerges as the most favorable approach

for topology optimization of structural systems based on the finite element method (FEM). Under

exact boundary representation, the material domain can be precisely defined, granting the flexibility

to impose arbitrary boundary conditions on newly generated boundaries throughout the optimization

process. This newfound capability is achieved through the recently introduced exact volume con-

straint method, which effectively addresses the convergence challenges associated with exact bound-

ary representation. However, one key consideration that has not yet been explored is the potential

nonlinearity of the reaction-diffusion equation governing the evolution of the level set function. Con-

sequently, the primary objective of this study is to expand upon the proposed topology optimization

methodology, which incorporates exact boundary representation, to account for nonlinear aspects of

the reaction-diffusion equation. Subsequently, we will conduct a comparative analysis of the results

obtained using various proportional constants denoted as K in relation to the level set function ϕ.

Key Words: Exact boundary representation, Volume constraint, Topology optimization, Topolog-

ical derivative, Finite element method

1. Introduction

In the realm of modern manufacturing processes, structural topol-

ogy optimization has assumed a pivotal role, courtesy of the re-

lentless advancement in computer technology. The SIMP (Solid

Isotropic Material with Penalization) method, a well-entrenched ap-

proach in topology optimization (1, 2), employs density distribution

to interpolate material constants. In its numerical implementation,

a nonzero lower bound for Young’s modulus is prescribed to avert

singularities when solving the stress equilibrium equation. To miti-

gate the limitations stemming from the pronounced grayscale issues

inherent to the original SIMP method, Yamada et al. introduced

the level-set method, particularly one based on solving the Reac-

tion Diffusion Equation (RDE) (3). This approach has subsequently

gained traction as an appealing alternative for addressing a spectrum

of topology optimization challenges (4, 5, 6, 7, 8, 10). Notably, topol-
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ogy optimizations involving updated body-fitted meshes (6, 7, 8) have

demonstrated success by adopting variations of the augmented La-

grangian method for volume-constrained problems. Nonetheless,

in the aforementioned studies, it remains essential to employ mesh

structures within the void domain, coupled with the imposition of

a nonzero lower bound, to circumvent singularity issues in solv-

ing the stress equilibrium equation. As we have demonstrated and

compared in the appendix of our recent work (10), this approach can

indeed achieve convergence, even when utilizing the conventional

(inexact) volume constraint method. This stability is attributed to

the presence of a nonzero lower bound within the void domain,

akin to the SIMP method, which serves to stabilize the optimization

process. In stark contrast to the prevailing body-fitted remeshing

paradigm, the attainment of exact boundary representation (where

no mesh is assigned within the void domain) has remained an elu-

sive goal. Additionally, it is worth noting that the widely adopted

topological derivative (12) for sensitivity analysis should ideally be

− 81  −



coupled with exact boundary representation, given its premise of

hole insertion rather than density distribution. The challenge of

achieving exact boundary representation likely stems from the adop-

tion of the conventional (inexact) volume constraint method (13, 14, 15).

In contrast, the recently proposed exact method for volume con-

straint (10) has enabled such convergence under the exact boundary

representation. However, in the prior work (10), the feasibility of

achieving exact boundary representation while considering a non-

linear RDE has yet to be investigated. On the other hand, there have

already been a handful of well-established works on RDE-based

topology optimization (11, 3) by applying conventional volume con-

straint methods. Therefore, the primary objective of this study is to

extend the proposed topology optimization methodology with exact

boundary representation to accommodate the nonlinear RDE, and

subsequently, compare the outcomes obtained with different pro-

portional constants K as a function of the level set function ϕ.

2. Methodology

To perform the structural topology optimization, first we define

the level-set function ϕ. The following level set function ϕ is in-

troduced to represent the material domain Ω, the material boundary

∂Ω and the complementary void domain D\Ω:


0 < ϕ(xxx) ≤ 1 for xxx ∈ Ω,

ϕ(xxx) = 0 for xxx ∈ ∂Ω,

−1 ≤ ϕ(xxx) < 0 for xxx ∈ D\Ω.

(1)

A characteristic function as defined below is necessary in perform-

ing the volume integration.

χϕ = H(ϕ) =

0 if ϕ < 0,

1 if ϕ ≥ 0.
(2)

The minimum compliance problem by considering the level set func-

tion ϕ(xxx) ∈ [−1, 1] as a spatial function inside the design domain

can be formulated as follows:

inf
ϕ

F (ϕ) = l(uuu), (3)

subject to a(uuu,vvv) = l(vvv), (4)

and G(ϕ) =

∫
D

χϕ dΩ− Vreq ≤ 0. (5)

The weak form of the governing equation reads

a(uuu,vvv) :=

∫
Ω

ε(uuu) : C : ε(vvv) dΩ, (6)

l(vvv) :=

∫
ΓN

ttt · vvv dΓ. (7)

Here D is the design domain, Vreq is the volume constraint, uuu is

the displacement, vvv is the virtual displacement, ε(uuu) is the corre-

sponding total strain, C is the fourth-order elasticity tensor and the

vector ttt is the given external boundary load. Since the boundary

representation becomes exact, the same weak form is based on the

reconstructed material domain Ω:∫
Ω

ε(uuu) : C : ε(vvv) dΩ =

∫
ΓN

ttt · vvv dΓ. (8)

Once K depends on ϕ, the nonlinear boundary value problem to

update the level set function is as follow.
∂ϕ
∂t

= K(ϕ)(−T + Λ+ τ∇2ϕ) in D,

∂ϕ
∂n

= 0 on ∂D\∂ΓN ,

ϕ = 1 on ∂ΓN .

(9)

Here t is the fictitious time, K(ϕ) is the coefficient of proportional-

ity, τ is a regularization parameter for the fictitious interface energy,

and T stands for the topological derivative and can be expressed as:

T = −σ : P : ε. (10)

The normalized topological derivative can be expressed as:
T = C0T ,

C0 =

∫
D

dΩ

2
∫
D

|T |dΩ
.

(11)

The polarization tensor P for the plane stress case can be found, for

example, in Lopes et al.:(12)

P =
1

1 + ν

(
2I− 1− 3ν

2(1− ν)
I ⊗ I

)
. (12)

Verification has been made by comparing the above topological

derivative with the corresponding result from the direct FEM cal-

culation. During the numerical implementation, it is the normalized

topological derivative T that has been used.

Our finite element analysis has been carried out by FreeFEM++,(16, 17)

and it is an open-source software package that requires formulating

the weak form of governing equation to carry out the finite element

simulation. As for the remeshing process, the open-source soft-

ware package Mmg has been employed. For illustration, the design

domain D, the material domain Ω and the void domain D\Ω are

shown in Fig. 1, alongside the geometry and boundary conditions.

2.1. The augmented Lagrangian method for volume-constrained

problems(13, 14, 15, 18)

For the nonlinear RDE, the Augmented Lagrangian for volume-

constrained problems, as referred as the conventional (inexact) method,

for the current step tn+1 = t+∆t, is formulated as:

Λn+1 =


1
V
(qn + rnGn) if Gn ≥ − qn

rn

0 if Gn < qn
rn

(13)

The positive scalar q is the Lagrange multiplier for the inequality

constraint, r is the penalty parameter, and η is a normalization factor

introduced to stabilize the results of sensitivity analysis. It should be
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(a) 2D center-load case (plane stress)

(b) 2D lower-load case (plane stress)

(c) 2D bridge-like case (plane stress)

Fig.1: The schematic of 2D minimum compliance problems.
The magnitude of the boundary traction is 10 kPa. The
Young modulus is 70 GPa, and the Poisson ratio is 0.33. For
the level set function, ∂ϕ

∂n = 0 on ∂D\ΓN and ϕ = 1 on ΓN

noted that all above parameters are from the previous optimization

step tn:

Gn =

∫
D

χ(ϕn) dΩ− Vreq. (14)

Only after knowing the current Λn+1 (and hence ϕn+1) can all other

parameters be updated as follows to be used in the next optimization

step. Given the initial values of the two parameters and the constant

γ are q1 = 0, r1 = 0.1 or 0.2 and γ = 1.025., they are updated in

the optimization process by:qn+1 = qn + rnmax(Gn,−qn/rn),

rn+1 = γrn.
(15)

2.2. The exact volume constraint method(10)

In contrast to the inexact method, our proposed exact volume

constraint method is virtually parameter-free. The pivotal idea of

the exact volume constraint method is to split the original RDE into

two terms by letting:

ϕ = ϕ∗ + Λ ϕ̂. (16)

Once split, ϕ∗ within the interval from t to t+∆t is governed by:

∂ϕ∗

∂t
= K(ϕ|t)(−T + τ∇2ϕ∗) in D,

∂ϕ∗

∂n
= 0 on ∂D\∂ΓN ,

ϕ∗ = 1 on ∂ΓN ,

ϕ∗|t = ϕ|t.

(17)

By subtracting Eq. (17) from the original RDE Eq. (9), after the

elimination of Λ, ϕ̂ satisfies the following initial boundary value

problem:(10)



∂ϕ̂
∂t

= K(ϕ|t)(1 + τ∇2ϕ̂) in D,

∂ϕ̂
∂n

= 0 on ∂D\∂ΓN ,

ϕ̂ = 0 on ∂ΓN ,

ϕ̂|t = 0.

(18)

Given that K(ϕ|t) remains unchanged from time t to t+∆t, the di-

vision of ϕ into two terms with their respective governing equations

remains unaffected. The volume constraint can then be viewed as

an implicit equation for Λ:

g(Λ) =

∫
D

χϕ(Λ)dΩ− Vreq = 0. (19)

For Eq. (19), Newton-Raphson iteration is needed to find Λ(10).

In the beginning of the optimization loop, as required to calculate

the volume integration, a smoothed Heaviside function capable of

converging to the rigorous Heaviside function has been adopted.

Instead of an invariantly smoothed Heaviside function, a stepwise

one is adopted:

H(ϕ) =
1

2
tanh(kϕ) +

1

2
. (20)

In the numerical implementation, we simply let k = nq + 1 (q =

0.5) at the nth time step. Besides, all other conditions, such as

the use of the smoothed Heaviside function have been made identi-

cal in the comparison between the two volume constraint methods.

The flowchart to implement the topology optimization by updating

ϕ without (Loop 1) and with (Loop 2) the reconstruction of the do-

main Ω is shown in Fig. 2. The level set function from using the

coarse mesh in Loop 1 has been interpolated onto the fine mesh in

Loop 2. The introduction of Loop 1 aims to reduce the remeshing

cost. For both loops, a convergence criterion below is adopted for ϕ

(0.01 for loop 1 and 0.02 for loop 2):

∥ϕ|t+∆t − ϕt∥L∞ < ϵϕ. (21)
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Initialize 𝜙(𝑥𝑥𝑥)

Update 𝜒 by 𝜙𝑡 (𝑥𝑥𝑥) for defining material

Solving original and adjoint problems in the

fixed domain 𝐷 with the coarse mesh

Compute the topological derivative

Solve for 𝜙∗
𝑡+Δ𝑡 (𝑥𝑥𝑥) in the fixed domain 𝐷

with the coarse mesh

Newton iteration to find Λ

and 𝜙𝑡+Δ𝑡 (𝑥𝑥𝑥) with updated 𝜙(𝑥𝑥𝑥).

𝜙𝑡+Δ𝑡 converged?𝑡 ← 𝑡 + Δ𝑡
Interpolate 𝜙(𝑥𝑥𝑥) to the fine mesh.

Reconstruct and remesh Ω based on 𝜙(𝑥𝑥𝑥)

Solving original and adjoint problems in the

new domain Ω with the fine mesh:

Compute the topological derivative

Solve for 𝜙∗ (𝑥𝑥𝑥) in the fixed domain 𝐷

with the fine mesh

Newton iteration to find Λ

and 𝜙𝑡+Δ𝑡 (𝑥𝑥𝑥) with updated 𝜙(𝑥𝑥𝑥).

𝜙𝑡+Δ𝑡 converged?

End

𝑡 ← 𝑡 + Δ𝑡

TrueFalse

True

False

Loop 1 Loop 2

Fig.2: Flowchart of the two-loop approach. For stress analysis, Loop 1 (left) adopts a fixed mesh, while Loop 2 (right) reconstructs
and remesh the material domain. The difference from (10) is that the RDE for ϕ̂ needs to be solved per each optimization step.
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3. Results and discussions

In this section, we will examine and discuss the results of topol-

ogy optimization, comparing the outcomes obtained through both

the inexact and the exact volume constraint methods introduced in

the preceding section. For all cases, the initial structure is a uni-

formly distributed characteristic function χ.

(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig. 3: Volume ratio by using the exact volume constraint
method for the center-load case considering three different
K(ϕ)

For the center-load case, as depicted in Fig. 3, the exact volume

constraint method consistently maintains the material volume ratio

within the design domain at precisely 0.4, meeting the specified rel-

ative error tolerance of 0.001 during Loop 1. It’s important to note

that the material volume ratio in Loop 1 includes a certain degree

(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig.4: Structural compliance by using the exact volume con-
straint method for the center-load case considering three dif-
ferent K(ϕ)

of grayscale, which neither represents material nor void. During

Loop 2, the grayscale is eliminated through material domain re-

construction and remeshing, resulting in an exact material volume

ratio. The remeshing process only marginally increases the actual

relative error tolerance compared to Loop 1. This demonstrates the

validity of our proposed exact volume constraint method for nonlin-

ear RDE, even though the governing equation for ϕ̂ must be solved

for each optimization step. Regarding the structural compliance in

Fig. 4, the initially low value before step 50 is attributed to the

significant grayscale presence. Among different K(ϕ) values, the

convergence is slowest when K = 1, while the other two converge
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Fig. 5: Structural change during optimization by using the
exact volume constraint method for the center-load case con-
sidering three different K(ϕ)

at a similar rate. For the structural changes during optimization in

Fig. 5, when K = 1 and K(ϕ) = 0.5 + cos(0.5πϕ), the struc-

ture at step 50 closely resembles the final converged structure in

Loop 1. However, the emergence of the structure is slowest when

using K(ϕ) = 0.5 + sin(0.5πϕ). Comparing the final optimized

structures, the upper and lower triangular openings in the case of

K(ϕ) = 0.5 + sin(0.5πϕ) are noticeably wider than those in the

other two cases.

The lower-load case, as depicted in Fig. 6, demonstrates that

our proposed exact method for volume constraint is valid regard-

less of the boundary conditions. Regarding structural compliance

in Fig. 7, the initially low value before step 50 can be attributed to

the significant grayscale presence. Among the different K(ϕ) val-

ues, K(ϕ) = 0.5+cos(0.5πϕ) results in faster convergence, while

K(ϕ) = 0.5 + sin(0.5πϕ) results in the slowest convergence.

In the context of structural changes during optimization in Fig.

8, both K = 1 and K(ϕ) = 0.5 + cos(0.5πϕ) lead to a struc-

ture at step 50 that closely resembles the final converged structure

in Loop 1. Conversely, the emergence of the structure is slowest

when using K(ϕ) = 0.5 + sin(0.5πϕ). When comparing the fi-

nal optimized structures, the upper triangular opening in the case of

K(ϕ) = 0.5 + sin(0.5πϕ) is notably wider than in the other two

cases. Additionally, in Fig. 8, more holes are visible in the case of

K(ϕ) = 0.5 + sin(0.5πϕ).

The bridge-like case, as depicted in Fig. 9, once again demon-

strates that our proposed exact method for volume constraint is valid

regardless of the boundary condition. Regarding structural com-

pliance in Fig. 10, the initially low value before step 50 can be

attributed to the significant grayscale presence. Among different

K(ϕ) values, K(ϕ) = 0.5 + cos(0.5πϕ) results in fastet conver-

gence, while K(ϕ) = 0.5 + sin(0.5πϕ) results in the slowest con-

vergence. When considering structural changes during optimization

in Fig. 11, the slowest emergence of the structure occurs when using

K(ϕ) = 0.5+ sin(0.5πϕ), and its final optimization result slightly

differs from the other two.

(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig. 6: Volume ratio by using the exact volume constraint
method for the lower-load case considering three different
K(ϕ)

The results obtained using the conventional volume constraint

method, referred to as the ’inexact method,’ will be examined here-

after. The center-load case, as observed in Fig. 12, highlights

a problem with the inexact method for volume constraint during

Loop 2, where achieving convergence during the reconstruction and

remeshing of the material domain becomes challenging. In Loop 2,

both K(ϕ) = 0.5 + cos(0.5πϕ) and K(ϕ) = 0.5 + sin(0.5πϕ)

exhibit significant fluctuations in both Fig. 12 and Fig. 13.

When considering structural changes during optimization in Fig.
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(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig.7: Structural compliance by using the exact volume con-
straint method for the lower-load case considering three dif-
ferent K(ϕ).

14, the slowest emergence of the structure occurs when using K(ϕ) =

0.5 + sin(0.5πϕ), and regardless of the choice of K(ϕ) = 0.5 +

cos(0.5πϕ), convergence remains elusive during Loop 2. This dif-

ficulty in achieving convergence during Loop 2 is inherent to the

inexact method for volume constraint, as it operates as an explicit

forward time-stepping method and faces challenges when dealing

with void domains without mesh.

The lower-load case, as observed in Fig. 15, highlights a problem

with the inexact method for volume constraint during Loop 2, where

achieving convergence during the reconstruction and remeshing of

the material domain becomes challenging. In Loop 2, both K(ϕ) =

0.5+cos(0.5πϕ) and K(ϕ) = 0.5+sin(0.5πϕ) exhibit significant

fluctuations in both Fig. 15 and Fig. 13. When considering struc-

tural changes during optimization in Fig. 17, the slowest emergence

of the structure occurs when using K(ϕ) = 0.5 + sin(0.5πϕ), and

regardless of the choice of K(ϕ) = 0.5+cos(0.5πϕ), convergence

remains elusive during Loop 2.

The bridge-load case, as observed in Fig. 18, once again, shows

that the inexact method for volume constraint can be problematic

during Loop 2. In Loop 2, both K(ϕ) = 1 and K(ϕ) = 0.5 +

cos(0.5πϕ) exhibit significant fluctuations in both Fig. 18 and Fig.

19. When considering structural changes during optimization in

Fig. 20, the slowest emergence of the structure occurs when using

K(ϕ) = 0.5+sin(0.5πϕ), and regardless of the choice of K(ϕ) =

0.5+cos(0.5πϕ), convergence remains elusive during Loop 2. This

difficulty in achieving convergence during Loop 2 is inherent to the

inexact method for volume constraint, as it operates as an explicit

forward time-stepping method and faces challenges when dealing

with void domains without mesh.

4. Conclusions

In the context of topology optimization using the exact volume

constraint method, we conducted a more extensive investigation

considering nonlinear RDE. Our findings indicate that the exact vol-

ume constraint remains valid regardless of the choice of K(ϕ), and

the differences among different K(ϕ) options are negligible. The

disparity between the FEM mesh used for stress equilibrium and

that employed for the reaction-diffusion equation (RDE) of the level

set function may be responsible for the convergence issue. As the

inexact volume constraint method operates similarly to an explicit

time-stepping scheme, instability accumulates within the optimiza-

tion loop. In this regard, the new exact volume constraint method

can stabilize the overall optimization process and is thus more likely

to achieve convergence.

Fig. 8: Structural change by the exact volume constraint
method for the lower-load case.
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(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig. 9: Volume ratio by the exact volume constraint method
for the bridge-like case.

(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig.10: Structural compliance by using the exact volume con-
straint method for the bridge-like case considering three dif-
ferent K(ϕ).

Fig. 11: Structural change during optimization by using the
exact volume constraint method for the bridge-like case con-
sidering three different K(ϕ)
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(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig.12: Volume ratio by using the inexact volume constraint
method for the center-load case considering three different
K(ϕ)

(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig. 13: Structural compliance by using the inexact volume
constraint method for the center-load case considering three
different K(ϕ)

Fig. 14: Structural change during optimization by using the
inexact volume constraint method for the center-load case
considering three different K(ϕ)
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(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig.15: Volume ratio by using the inexact volume constraint
method for the lower-load case considering three different
K(ϕ)

(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig. 16: Structural compliance by using the inexact volume
constraint method for the lower-load case considering three
different K(ϕ)

Fig. 17: Structural change during optimization by using the
inexact volume constraint method for the lower-load case
with different K(ϕ)
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(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig.18: Volume ratio by using the inexact volume constraint
method for the bridge-like case with different K(ϕ)

(a) K(ϕ) = 1

(b) K(ϕ) = 0.5 + cos(0.5πϕ)

(c) K(ϕ) = 0.5 + sin(0.5πϕ)

Fig. 19: Structural compliance by using the inexact vol-
ume constraint method for the bridge-like case with different
K(ϕ)

Fig. 20: Structural change during optimization by using the
inexact volume constraint method for the bridge-like case
with different K(ϕ)
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