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Material interpolation scheme and sensitivity analysis are studied in this research, with

the aim to achieve topology optimization of rarefied gas flow structures. Choosing the

discrete velocity method as the numerical approach for the Boltzmann equation, mate-

rial interpolation scheme is developed by correcting the convection flux of the discretized

convection equations and re-scaling the relaxation term of the Shakhov gas kinetic model.

With the proposed interpolation scheme, material distribution can be effectively modelled

using a pseudo design density. A discrete adjoint system is proposed for sensitivity anal-

ysis. The governing equation, the Boltzmann equation, in the optimization problem is

replaced by the steady state condition of the numerical scheme. The discretized version

of the governing equation results in a simple and straightforward way to formulate an

adjoint system using the Lagrangian multiplier method. The numerical solution of the

adjoint system can be obtained by a similar numerical approach, if the flux Jacobian of the

original system is transposed. Numerical examples confirm the validity of the proposed

methods, which can serve as the basis for structural optimization algorithms in rarefied

flow systems.
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1. Introduction

According to the kinetic theory, gas is made up by an

enormous number of molecules travelling randomly in space.

Each molecule carries momentum and energy, and their ran-

dom collisions result in dissipation of momentum and energy

in the form of shear force and heat flux. Under usual condi-

tions, the shear number of gas molecules guarantees that the

collision frequency is extremely high, so that the mean free

path (the average distance travelled by molecules between

collisions) is very small, and hence negligible compared to

the characteristic length of the flow field. In other words,

in the macroscopic scale (one that is comparable with the

characteristic length of the flow field), gas can be treated as

a continuum, where only a few macroscopic quantities (such

as density, temperature, and velocity) are required to fully
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describe it. The dissipation of momentum and energy via

the numerous inter-molecular collisions can be categorically

described by constitutive laws such as Newton’s law of vis-

cosity and Fourier’s law of heat conduction.

However, under what is called the rarefied condition, be-

havior of gas can be drastically different. By definition, rar-

efication refers to the condition where the mean free path λ

becomes non-negligible compared to the characteristic length

Lc of the flow field. Or, introducing the non-dimensionalized

Knudsen number Kn = λ/Lc, when Kn gets larger than

10−4(1). Under rarefied conditions, the lack of inter-molecular

collisions means the velocity distribution of gas molecules

deviates from the conventionally assumed equilibrium con-

ditions. As a result, the empirical constitutive conditions

will break down, and the flow field will be more suscepti-

ble to the conditions of the solid boundaries that enclose it.

When Kn is sufficiently large, peculiar phenomenon such as
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thermal transpiration will occur(2).

The condition of rarefication usually requires extremely

low pressure (for large λ) or very small spatial scales (for

small Lc). Although rarely encountered in daily life, rar-

efied gas are commonly found in several cutting-edge en-

gineering fields, such as vacuum technology, space technol-

ogy, and micro-electro-mechanical systems (MEMS). Accu-

rate modelling and numerical simulation of rarefied gas flows

are, therefore, of fundamental significance to the design and

developments of various products. Examples include micro

actuators, gas sensors, and space nozzles(4). However, the

optimal design of these fascinating devices have long been

an open question. This is primarily due to the mathemati-

cal and computational barriers associated with the governing

equation, the Boltzmann equation. As is mentioned, rarefied

gas behaves unconventionally, and thus the Navier-Stokes-

Fourier (NSF) equations cannot be used as the governing

equation. The Boltzmann equation employs a distribution

function f to describe the distribution of gas molecules in

terms of both position and velocity, and the equation is

closed by considering the changes to f due to streaming,

reflection, and collision of all the molecules. Over the years,

several numerical methods have been developed for the Boltz-

mann equation, such as the direct simulation Monte-Carlo

(DSMC)(5, 6) the discrete velocity method (DVM)(7, 8), and

the lattice Boltzmann method (LBM)(9, 10). However, solv-

ing the Boltzmann equation numerically does not fully ad-

dress the question of optimal design. Theoretically, empir-

ical methods like trial-and-error can be applied, where one

chooses from a finite number of candidates according to nu-

merical results(12). But clearly, empirical methods lacks rig-

orousness, as it cannot rule out the possibilities of better

designs that are not tested yet. Apart from that, empir-

ical methods require considerable computational resources,

which makes applications to large-scale systems expensive(11).

As a result, at the time being, most flow devices in rarefied

flow fields have rather simple shapes, consisting mostly of

straight lines and arcs(13).

In order to develop optimal design approaches for rarefied

gas flows, researchers have turned to topology optimization.

The advantages of topology optimization is quite obvious: it

preserves the high degree-of-freedoms of the original design

problem, and ensures global optimality of the obtained re-

sult. However, the complexity of Boltzmann equation poses

a challenge to conduct material sensitivity analysis. From

the available literature, Sato et al. used a direct extension

of the Boltzmann equation to describe material distribution,

and design sensitivity is obtained using the adjoint variable

method and the Lagrangian multiplier method(14). How-

ever, the complexity of the Boltzmann equation, or the sub-

stituted Bhatnagar-Gross-Krook (BGK) equation, results in

cumbersome derivation and numerical treatment of the ad-

joint system. As is reported, optimization of a 2D system

using 100 × 100 square meshes takes around 40 hours.

Guan et al. used direct simulation Monte-Carlo (DSMC)

to calculate the rarefied flow field, and proposed a mate-

rial interpolation scheme based on the DSMC algorithm us-

ing a pseudo design density(16). For sensitivity analysis, a

discretize-then-optimize (DTO) approach due to Caflisch(15)

is used. This approach focuses on the dependencies of the

numerical variables in the simulation, and bypasses the te-

dious treatment of the continuous adjoint system as is used

by Sato et al. Nevertheless, the DTO approach in sensitivity

analysis could require storage of all the intermediate vari-

ables during the simulation, which incurs extreme memory

usage in practical terms.

In this paper, we would like to present an efficient sensitiv-

ity analysis approach for rarefied gas flows, which addresses

the drawbacks of the above-mentioned methods. The struc-

ture of this paper is as follows. In Section 2, a brief review

of the discrete velocity method (DVM) is provided, which

is a deterministic method for the Boltzmann equation. In

Section 3, a new material interpolation scheme is proposed.

The proposed interpolation scheme is based on the DVM al-

gorithm, and directly captures the presence of solid by modi-

fying the convection fluxes. In Section 4, design sensitivity is

derived based on a discrete adjoint system. It will be shown

that the proposed approach reduces memory cost compared

to the DTO approach, and its computational cost is com-

parable to the forward DVM process. Finally, in Section

5, several numerical examples are provided to validate the

proposed interpolation scheme and sensitivity.

2. Review of the Boltzmann equation and DVM

2.1. The Boltzmann equation

Neglecting external force, the single-species rarefied gas

flow is governed by the Boltzmann equation

∂f

∂t
+ v · ∇xf = W [f ]. (1)

In Eqn. (1), f is the distribution function of the gas molecules.

f(x, v, t) represents the probability density of finding a molecule

around position x with velocity v at time t. On the right

hand side (RHS), W [f ] is the collision integral, which de-

scribes the rate of change in f due to the collisions between

molecules. The general expression for W [f ] is

W [f ] =

∫
R3

∫
S2

q(v− v1, σ)(f
∗f∗

1 − ff1)dσdv1, (2)

where S2 is the unit sphere, q(v− v1, σ) is the collision sec-

tion that characterizes the likelihood of collision between
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molecules with velocity v and v1 at reflection angle indi-

cated by σ, and f1, f
∗, f∗

1 are short-hand notations for the f

at pre-collision and post-collision velocity points. The details

of Eqn. (2) can be found in reference(17).

2.2. DVM

In order to solve Eqn. (1), DVM first introduces a simpli-

fication of the collision integral W . The Shakhov gas-kinetic

equation is often used, where

W [f ] =
1

τ
(f sh − f). (3)

In Eqn. (3), τ = µ/p is a characteristic relaxation time,

where µ is viscosity and p is pressure. f sh is a target relax-

ation state given through the Maxwellian distribution fma

by

f sh = fma

[
1 + (1− Pr)

Q · c
5pR0T

(
c2

R0T
− 5

)]
, (4)

where c = v − V is the peculiar velocity, Pr is the Prandtl

number, R0 is specific gas constant, V,Q, T are the velocity,

heat flux, and temperature of the flow, respectively. The

expression for fma is

fma(x, v, t) =
ρ

(2πR0T )3/2
exp

(
− c2

2R0T

)
, (5)

where ρ is density of gas.

Using the Shakhov model, Eqn. (1) is simplified to

∂f

∂t
+ v · ∇xf =

1

τ
(f sh − f). (6)

DVM uses discretized values of f over both the physical do-

main and the velocity domain to solve Eqn. (6) numerically.

Let {v̂1, v̂2, · · · , v̂Nv} be a set of Nv fixed velocity points,

Eqn. (6) is discretized in velocity domain as

∂f̂k
∂t

+ v̂k · ∇xf̂k =
1

τ
(f̂ sh

k − f̂k) (7)

for 1 ≤ k ≤ Nv, where f̂ sh
k stands for f sh(x, v̂k, t) and f̂k

stands for f(x, v̂k, t). Note that, if the RHS of Eqn. (7) is

treated as an external source, Eqn. (7) represents a system

of convection equations, each with fixed velocity v̂k. The

system of convection equations can be solved efficiently via

many of the established methods in computational fluid me-

chanics. In this paper, we use the same finite volume method

(FVM) spatial discretization for all the Nk equations.

2.2.1. Macroscopic quantities

For computation of f sh and for evaluation of the flow field,

macroscopic quantities such as density, velocity, tempera-

ture, etc. are usually required. These quantities can be

obtained as moments of the distribution function f .

ρ(x, t) =

∫
R3

f(x, v, t)dv, (8)

V(x, t) =
1

ρ

∫
R3

f(x, v, t)vdv, (9)

p(x, t) =
1

3

∫
R3

f(x, v, t)(v−V)2dv, (10)

Q(x, t) =
1

2

∫
R3

f(x, v, t)(v−V)(v−V)2dv. (11)

In DVM, the integrals in Eqn. (8) to Eqn. (11) should be re-

placed by numerical quadrature. In this paper, 24-point and

50-point Gauss-Hermite quadrature are used. Temperature

can be obtained by the equation of state

T =
p

ρR0
, (12)

and relaxation time can be obtained by

τ =
µ

p
=

µ0(T/T0)
ω

p
, (13)

where µ0 is a reference value of µ at temperature T0, and ω

is a gas-specific constant. Once the macroscopic quantities

are obtained, f sh can be explicitly calculated.

2.2.2. Boundary condition

For a computational domain C of rarefied flow, its bound-

ary can be divided into two types: open and closed. Open

boundaries are those where fluid is present on both sides,

such as flow inlets/outlets, and far-field flows. For open

boundaries, boundary conditions can be determined accord-

ing to established results in CFD. For closed boundaries,

gas molecules are reflected on the solid surfaces. The ex-

act boundary conditions are given in terms of reflection ker-

nels Rrfl(vi, vr), which states the probability density of a

molecule getting reflected to velocity vr when it hits the sur-

face with velocity vi. In DVM computation, solid boundaries

are treated as extra source (or sink) of f .

2.2.3. Time marching scheme

In rarefied gas flows, turbulence is hardly present, and the

focus is mainly on the steady state flow field. Therefore,

an LUSGS-based implicit time marching scheme, as is de-

scribed in reference(18) is used, which drastically speeds up

convergence.

3. Topology optimization and material interpolation

3.1. Topology optimization

In topology optimization, we consider the problem to find

the optimal structure that minimizes/maximizes a given ob-

jective function. The key idea is to replace the structure

optimization problem by a material distribution problem,

namely, for a characteristic function χ, we let

χ(x) =

{
1 x ∈ F ,

0 x ∈ D\F ,
(14)

where D is the design domain, and F is fluid domain. How-

ever, as χ can take either 1 or 0 for x ∈ D, infinitely small

structures are not prohibited, resulting the optimization prob-

lem being ill-posed. One solution is to use a normalized

density α instead of χ as the design variable, where α is in

L∞(D; [0, 1]), Lebesgue integrable functions defined over D
with value between 0 and 1. Using the pseudo design density

can increase the regularity of the obtained structures(19).
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However, introduction of α brings a new problem. As α

can take values between 0 and 1, some intermediate state

between solid and fluid is introduced. Therefore, the com-

putational domain, which consists of pure fluid initially, will

have to be extended to a domain of mixed fluid and solid.

3.2. Material interpolation in DVM

In reference(14), extension of the rarefied flow is achieved

by extension of the Boltzmann equation. It is noted that the

fixed solid can be treated as some porous media with varying

permeability. A numerical scheme is then developed to solve

the extended Boltzmann equation.

In this paper, we consider a more straightforward ap-

proach, where we directly construct an extension to the con-

ventional DVM algorithm. Following the FVM spatial dis-

cretization, we let α⃗ denote the discretized representation

of design variable α in Nc computational cells. Namely,

α⃗ = (α1, α2, · · · , αNc)
′, where (·)′ denotes transposition. We

state that the following properties should be satisfied by the

extension:

• The result of extended DVM calculation should change

continuously with α⃗.

• For a given α⃗ whose elements are either 0 and 1, re-

sult of the extended DVM shall be the same as con-

ventional DVM, where the computational domain is

set to the union of all cells where α = 1, and identical

boundary conditions are applied.

Shifting the focus from the Boltzmann equation to DVM

bypasses the cumbersome derivation processes, and allows

us to control or fine-tune the material interpolation scheme

directly. In the following subsections, we present the detailed

description of our extended DVM scheme.

3.2.1. Modification in convection flux

The DVM discretization transforms the Boltzmann equa-

tion into a system of convection equations (7). Using FVM

spatial discretization to solve the convection equations in-

volves evaluating the surface fluxes at the boundaries of the

computational cells. Without loss of generality, we write the

flux as ϕk for the convection equation featuring v̂k. The de-

tailed expression of ϕk shall depend on the flux reconstruc-

tion scheme one chooses, for instance, first-order upwind,

Van-Leer, essentially non-oscillation (ENO), etc. In conven-

tional DVM, the computational domain consists purely of

fluid, hence ϕk that leaves the upwind cell flows entirely into

the downwind cell. This ensures conservation of the FVM

scheme. However, the the extension of DVM, our computa-

tional domain may include a mixture of different materials,

as is indicated by the value of α stored in each computational

cell. In order to model the transfer from fluid (α = 1) to

solid (α = 0), we suggest the following correction of convec-

tion flux, using the value of α across the cell boundary. Still,

we let ϕk represent the flux obtained according to standard

DVM, αup be the value of α in the upwind cell, and αdown be

the value of α in the downwind cell. The corrected scheme

is described as follows.

• The flux that leaves the upwind cell becomes αupϕk.

• The flux that enters the downwind cell becomes

αupαdownϕk.

• In order to preserve conservation, the difference be-

tween the two fluxes, αup(1−αdown)ϕk, shall be fed to

a local reflection kernel Rlocal
rfl , which describes post-

reflection conditions, if solid is present in the compu-

tational cell.

Note that, in this extended scheme, when αup = 0, the net

flux that leaves the cell must be zero, which is in accordance

with the idea that solid does not emit molecules into gas.

On the other hand, when αdown = 0, the flux enters the

downwind cell must be zero, which means solid does not

absorb molecules from gas. In that case, αup = max(αup −
αdown, 0), which means all the flux that leaves the upwind

cells shall be reflected.

Also note that, the proposed scheme does not depend on

the actual expressions of ϕk and Rlocal, and only depends

on αup and αdown. This ensures the versatility, namely, this

extension in convection flux can be applied to any flux re-

construction scheme and any reflection boundary condition.

3.2.2. Modification in relaxation time

In DVM, we use implicit time scheme to update the flow

field. According to reference(18), the convection fluxes, as

well as the − 1

τ
f term on the RHS of Eqn. (3) are treated

implicitly, while the Shakhov state
1

τ
f sh is treated as a con-

stant source term in every iteration. This is because f sh de-

pends on all the velocity components in one computational

cell. If a full implicit scheme is used, f sh will have to be

re-calculated after the update of every single velocity com-

ponent, which is too expensive in computational terms. It

can be shown that, when Kn is sufficiently large (Kn > 1),

treating
1

τ
f sh explicitly will not slow down convergence sig-

nificantly, as convection still dominates the development of

flow field. However, in the extended DVM scheme, α re-

stricts the effective convective fluxes between computational

cells. As a result, when α takes a non-zero small value,

the magnitude of convective change will likely be overshad-

owed by the magnitude of relaxation change, which can be

thought of as a local drop in Kn for the computational cell.

Consequently, explicit treatment of
1

τ
f sh cannot effectively

update the flow field, and the speed of convergence could be

drastically impaired.
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In order to fix this local decrease in Kn and restore the

computational efficiency, we suggest the relaxation term strength

to be equally scaled by local value of α. Namely, the collision

integral W shall be modelled by

W [f ] =
α

τ
(f sh − f). (15)

Using the modified relaxation model ensures that the mag-

nitude of convection and relaxation remain balanced accord-

ing to a global Kn, so that the rate of convergence of the

extended DVM will be at the same level compared to con-

ventional DVM.

It may cause some confusion that for α = 0, the relax-

ation term vanishes for solid regions, which is opposite to

the model in reference(14), where solid is treated as regions

where inter-molecular collisions are extremely strong. Note

that, in our proposed method, despite relaxation is effec-

tively non-existent for solid, the velocity distribution in solid

region has zero effect on its neighbouring cells due to the cor-

rection in convection fluxes. The presence of solid (or cells

where α = 0) is manifested by the additional reflection fluxes

created at the cell boundaries, whose intensity depends en-

tirely on the incident flux from outside the solid region. And

since the effective convection flux from the upwind cell to the

downwind is corrected by a factor αupαdown, the influence of

a computational cell to the entire computational domain is

limited by the local value of α. Together with modification of

macroscopic flow quantities in the objective function, which

will be introduced below, modifying τ according to α will not

cause ill effects to the global flow field, even if 0 < α < 1.

3.2.3. Modification in objective function

In order to increase the convexity of the optimization prob-

lem, we suggest to add a penalty term in the final results

of DVM calculation. Let ρ̂, V̂ , p̂, Q̂ be the density, velocity,

pressure, and heat flux calculated from numerical quadra-

ture, as is done in convectional DVM. In the extended DVM,

we suggest using ρ̂∗, V̂ ∗, p̂∗, Q̂∗ as substitutions. The defini-

tions are

ρ̂∗ = αβ ρ̂+ (1− αβ)ρ0, (16)

V̂ ∗ = αβ v̂ + (1− αβ)V0, (17)

p̂∗ = αβ p̂+ (1− αβ)p0, (18)

Q̂∗ = αβQ̂+ (1− αβ)Q0, (19)

where ρ0,V0, p0,Q0 are constant values, representing the de-

sired density, velocity, pressure, and heat flux of the flow field

when solid is present. For steady solid, V0 = Q0 = 0. Gas

density and pressure are not properly defined for a pure solid

region, we suggest using the initial values in DVM calcula-

tion ρ0 = ρini, p0 = pini. The exponent β ≥ 0 controls the

level of penalization.

4. Sensitivity analysis via discrete adjoint system

In topology optimization, the key step, sensitivity analy-

sis, is dedicated to evaluate the change of the objective func-

tional due to changes in the design variable. The conven-

tional sensitivity analysis approach is to use the Lagrangian

multiplier method with adjoint variables. Like is done in ref-

erence(14), a system of adjoint equations, with proper bound-

ary conditions, should be derived based on the Boltzmann

equation. After that, a separate numerical scheme is de-

veloped to solve for the adjoint variables numerically. This

optimize-then-discretize (OTD) approach, as is discussed in

reference(15), requires rigorous yet tedious derivations, which

is particularly the case for the Boltzmann equation. In refer-

ence(16), an alternative discretize-then-optimize (DTO) ap-

proach is used, where the focus is shifted to the numeri-

cal variables. The DTO approach bypasses the derivation,

and simplifies the formulation significantly. However, simply

tracking the dependencies of the numerical variables from

their initial values to the steady state solution incurs seri-

ously high memory usage and lacks computational efficiency.

In the following subsections, we shall introduce a discrete

adjoint system based on the discretized version of the Boltz-

mann equation through the proposed extension of DVM.

4.1. Symbolic expressions for the extended DVM

In extended DVM, we can write the discrete values f̂k in

one state vector f⃗ ∈ RNcNv ,

f⃗ = (f⃗ ′
1, f⃗

′
2, · · · , f⃗ ′

Nc
)′, (20)

where each f⃗i ∈ RNv represents the discretized f̂k(1 ≤ k ≤
Nv) in the computational cell indexed i,

f̂i = (f̂1,i, f̂2,i, · · · , f̂Nv,i)
′. (21)

The extended DVM updates the state vector f⃗ at every time

step until the flow field reaches steady state. The steady

state can be identified as the zero of a residual operator

R⃗(f⃗) ∈ RNcNv . R⃗ takes the current discretized value f⃗ as

input, and returns the rate of change with respect to time

for every component. The detailed expressions of R⃗ should

depend on the FVM discretization of the computational do-

main, the flux reconstruction scheme for the convection equa-

tions, and α⃗. Therefore, the steady state of the rarefied flow

field, as is dictated by

v · ∇xf = W [f ] (22)

can be rewritten in discrete form as

R⃗(f⃗ ; α⃗) = 0. (23)

Note that, the boundary conditions of Eqn. (22) are auto-

matically included in Eqn. (23) by proper definition of R⃗.
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4.2. Discrete optimization problem

Following the discretized governing equation, we consider

the model optimization problem for rarefied flow field.

inf
α⃗

K = K(f⃗ ; α⃗), (24)

subject to

R⃗(f⃗ ; α⃗) = 0. (25)

K is a objective functional to be minimized, and is defined

over the state vector f⃗ and the pseudo design density α⃗. Note

that the expression of K is very general, as all the macro-

scopic flow quantities can be obtained from the discrete ve-

locity distribution function via proper quadrature. Equation

(25) uses the discretized expression of steady state.

4.3. Discrete adjoint system

Design sensitivity is obtained using the augmented La-

grangian multiplier method with adjoint variables. We de-

fine the Lagrangian J as

J =K(f⃗ ; α⃗)− Φ⃗ · R⃗(f⃗ ; α⃗) (26)

In J , Φ⃗ ∈ RNcNv is the vector of adjoint variables. Accord-

ing to first-order optimal conditions, we derive the adjoint

equations by stating
∂J

∂f⃗
= 0, namely,

∂K

∂f⃗
−

(
∂R⃗

∂f⃗

)′

Φ⃗ = 0. (27)

Note that,
∂K

∂f⃗
is the gradient of K with respect to f⃗ , which

is a vector in RNcNv .
∂R⃗

∂f⃗
is the Jacobian of flow residual R⃗

with respect to f⃗ , which is an NcNv ×NcNv square matrix.

For known f⃗ and α⃗,
∂K

∂f⃗
and

∂R⃗

∂f⃗
can be explicitly formu-

lated. Therefore, symbolically speaking, Eqn. (27) is simply

a system of linear equations. Once Φ⃗ is numerically solved,

the sensitivity H⃗ is obtained by

H⃗ =
∂J

∂α⃗
=

∂K

∂α⃗
−

(
∂R⃗

∂α⃗

)′

Φ⃗. (28)

Similar to Eqn. (27),
∂K

∂α⃗
and

∂R⃗

∂α⃗
are gradient and Jacobian

which can be explicitly evaluated given f⃗ and α⃗.

4.4. The transposed flux Jacobian

The main challenge of sensitivity analysis lies in Eqn. (27),

where we need to find the inverse of the transposed flux

Jacobian

(
∂R⃗

∂f⃗

)′

. Let B denote the original flux Jacobian

∂R⃗

∂f⃗
. Note that, due to the structure of f⃗ , B can be written

in the form of a Nc ×Nc block matrix. Each block Bi,j is a

Nv × Nv sub-matrix, which corresponds to the Jacobian of

flow residual in cell j with respect to the state vector in cell

i. Note that, due to the locality of the FVM discretization,

most of Bi,j will be zero. Bi,j is non-zero only when i = j or

when i, j are adjacent computational cells. Therefore, the

transposed system B′ is also a sparse matrix, which can be

solved using the LUSGS technique with similar efficiency.

4.5. Discussion regarding the adjoint variables

The sensitivity obtained via the discrete adjoint system is

closely related to one that obtained from a finite-difference

approach. Consider the objective functional K(f⃗ , α⃗), we

would like to obtain its rate of change with respect to per-

turbations in α⃗, which is to consider the total derivative

dK

dα⃗
=

∂K

∂f⃗

∂f⃗

∂α⃗
+

∂K

∂α⃗
. (29)

For given objective functional K and known values of f⃗ and

α⃗, the two gradients
∂K

∂f⃗
and

∂K

∂α⃗
can be explicitly evalu-

ated. However, the remaining term
∂f⃗

∂α⃗
, is less obvious. f⃗

and α⃗ are related by the state equation (25), which dictates

that zero flow residual should be attained by f⃗ under given

α⃗. Therefore, for a small change in α⃗ to α⃗ + ∆α⃗, the cur-

rent steady state f⃗ must change to f⃗ +∆f⃗ , such that their

induced changes in R⃗ cancel out. Namely,

R⃗(f⃗ +∆f⃗ ; α⃗+∆α⃗)

=R⃗(f⃗ ; α⃗) +
∂R⃗

∂f⃗
∆f⃗ +

∂R⃗

∂α⃗
∆α⃗+O[(max(||∆f⃗ ||, ||∆α⃗||)]

=0. (30)

Note that the original steady state satisfies R⃗(f⃗ ; α⃗) = 0,

neglecting higher order terms, we have

∂f⃗

∂α⃗
= −

(
∂R⃗

∂f⃗

)−1
∂R⃗

∂α⃗
. (31)

Substituting Eqn. (31) into Eqn. (29), we get an alternative

expression for sensitivity

dK

dα⃗
= −∂K

∂f⃗

(
∂R⃗

∂f⃗

)−1
∂R⃗

∂α⃗
+

∂K

∂α⃗
. (32)

Note that, the inverse

(
∂R⃗

∂f⃗

)−1

is not necessarily sparse,

and would take up too much memory to store when NcNv is

large. One possible solution is to use an iterative approach

to calculate the result of Eqn. (31). However, note that
∂R⃗

∂α⃗
is an NcNv ×Nc matrix. When Nc is large, this approach is

still considerably expensive compared to finding the steady

state flow field in DVM. One more feasible approach is to

evaluate
∂K

∂f⃗

(
∂R⃗

∂f⃗

)−1

first. Note that the transpose rule

states that[
∂K

∂f⃗

(
∂R⃗

∂f⃗

)−1]′
=

[(
∂R⃗

∂f⃗

)−1]′ (
∂K

∂f⃗

)′

(33)
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The solution of Eqn. (33) is exactly the adjoint variables Φ⃗.

5. Numerical examples

5.1. Material interpolation

We use the following flow fields to demonstrate the validity

of the proposed material interpolation scheme.

(a) Benchmark case.

(b) Extended case.

Fig. 1: Computational domain of the plane Fourier flow.

5.1.1. Plane Fourier flow

In plane Fourier flow, rarefied gas is placed between two

infinitely large parallel plates. The plates are stationary,

but kept at different temperatures. The lower plate has

Tlow = 0.5, and the higher plate has Thigh = 1.5, which are

non-dimensionalized against reference temperature T0 = 273

K. The separation between the plates is 1 m, which is also

the characteristic length of the flow field. Diffuse reflection

boundary conditions are set at the gas/solid interfaces. We

choose Argon as the working gas, and consider cases where

a uniform initial density ρ0 results in Kn = 10.0, 1.0, 0.1,

respectively.

As a benchmark case, we first calculate the flow field us-

ing standard DVM procedure. Due to the symmetry of the

problem, we use 100 uniform-spaced computational cells to

discretize the domain. The velocity domain is normalized by

the reference speed v0 =
√
2R0T0, and discretized using 50

(a) Kn = 10.0

(b) Kn = 1.0

(c) Kn = 0.1

Fig. 2: Temperature distribution in the plane Fourier

flow at different Kn.

Gauss-Hermite quadrature nodes in each spatial direction,

resulting Nv = 2500 for the 2D case. For the discretized

convection equations, first-order upwind scheme is used to

reconstruct the surface flux.

To test the proposed material interpolation scheme, we

consider an extended computational domain, where the sep-

aration between plates is increased to 1.2 m, and the number

of uniform computational cells is increased to 120. In order

to maintain the characteristic length, the lower 1/6 of the

computational domain is assigned α = 0, and the rest 5/6 is

assigned α = 1. Illustration of the computational domains is

included in Fig. 1. Fig. 2 and Fig. 3 show the distribution of

temperature and heat flux (normalized against Q0 = ρ0v
3
0).

In the flow region where α = 1, the extended DVM gives

identical results compared to the benchmark cases. In the
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extended region where α = 0, due to the modification scheme

introduced in Section 3.2.3, macroscopic quantities actually

do not depend on DVM results. Flow temperature and heat

flux are simply forced to be 1.0 and 0.0, respectively, which

are prescribed values to represent the presence of solid. Of

course, the choice of representation of solid is a rather ar-

bitrary one, for instance, one can use 0.5 to represent solid

temperature in this plane Fourier flow.

(a) Kn = 10.0

(b) Kn = 1.0

(c) Kn = 0.1

Fig. 3: Heat flux distribution in the plane Fourier flow

at different Kn.

5.1.2. Plane Couette flow

The setup of plane Couette flow is similar to that of the

plane Fourier flow, as is shown in Fig. 4. Rarefied Argon is

placed between two infinitely large parallel plates separated

by 1 m. Both plates are kept at T = 1.0, but the upper

plate moves at vplate = 0.1 (normalized against v0). The

solid surfaces are treated as diffuse reflectors. We use the

same discretization scheme as the Fourier flow, which is 50

Gauss-Hermite points in each spatial direction, and Nv =

2500. Three cases are considered where Kn = 10.0, 1.0, 0.1,

respectively. Again, we consider a benchmark case and an

extended case, where the separation is increased to 1.2 m,

and the lower 1/6 of the computational domain is marked

by α = 0.

(a) Benchmark case.

(b) Extended case.

Fig.4: Computational domain of the plane Couette flow.

Fig. 5 and Fig. 6 show the distribution of x−velocity

(normalized against v0) and shear stress (normalized against

ρ0v
2
0). Note that in the flow region where α = 1, the ex-

tended DVM gives identical results compared to the bench-

mark cases. In regions where α = 0, like the case of plane

Fourier flow, the final velocity and shear stress are effectively

independent of DVM results. Their values are both set to 0

due to the modification scheme in final macroscopic quanti-

ties.

5.1.3. Cavity with inlet and outlet

We consider a 2D cavity with an inlet and an outlet, as

is shown in Fig. 7. At the inlet, gas density and pressure

are fixed at unit value. At the outlet, vacuum condition is

imposed, which means no molecules can come in. Knudsen

number is set to Kn = 1.0. The computational domain is

divided into two regions C1 (white color) and C2 (gray color).
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(a) Kn = 10.0

(b) Kn = 1.0

(c) Kn = 0.1

Fig. 5: x−velocity distribution in the plane Couette flow

at different Kn.

In C1, we set α = 1. In C2, we consider three cases where

α = 0, 0.5 and 1. The distribution of flow velocity is shown

in Fig. 10. It can be seen that as α in C2 increases from 0

to 1, the velocity in C2 gradually increases, until it merges

with C1 as a whole. The physical domain is discretized by

100 × 100 uniform square cells, and the velocity domain is

discretized by the same 2500 Gauss-Hermite points in 2D as

in previous cases.

5.2. Sensitivity from discrete adjoint system

We use the same 2D cavity problem to demonstrate the

validity of design sensitivity obtained from the discrete ad-

joint system. The discretization schemes in both physical

and velocity domains are kept identical. Consider the ob-

jective functional K defined as the flow rate at the inlet.

Namely, K is the average of flow velocity in the x−direction

at Γin. In discrete terms, K is obtained by the average of

(a) Kn = 10.0

(b) Kn = 1.0

(c) Kn = 0.1

Fig.6: Shear stress distribution in the plane Couette flow

at different Kn.

x−velocity among all the cells at Γin, which are obtained ac-

cording to Eqn. (17). We consider the case where α = 1 in

the computational domain, which means the cavity is filled

with rarefied gas. Letting β = 0, we can solve the adjoint

equation for Φ, and obtain H⃗ in every computational cell.

The results are shown in Fig. 8.

A comparison of H⃗ with its finite difference counterpart

H⃗FD is provided in Fig. 9, where the absolute value of the

difference is shown. We can see that the results are in good

agreement. The definition of the i-th element of H⃗FD is

HFD,i =
K(α⃗+ ϵe⃗i)−K(α⃗)

ϵ
, (34)

where e⃗i is the i-th unit vector, and ϵ is a small value, cho-

sen as 10−4 in this example. H⃗FD can be interpreted as a

finite difference approximation of the design sensitivity. It is

simply the ratio between the change of objective functional
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Fig. 7: Computational domain of the cavity flow.

Fig. 8: Sensitivity distribution in the computational do-

main

Fig. 9: Error distribution in the computational domain

K and the change in design variable α⃗.

6. Conclusion

In this research, material interpolation scheme and sensi-

tivity analysis method is developed for topology optimization

of rarefied gas flows. The main results are listed as follows.

1. Based on the DVM for rarefied gas flows, a mate-

rial interpolation scheme is proposed, which allows

parametrization of solid/fluid distribution in the de-

sign domain using a pseudo density. The proposed

scheme can be applied for any reflection boundary

condition, and does not impair the computational ef-

ficiency of standard DVM.

2. A discrete adjoint system is formulated based on func-

tional representation of the extended DVM algorithm

and the Lagrangian multiplier method. The adjoint

system can be numerically solved by transposing the

flux Jacobian.

3. The proposed interpolation scheme and sensitivity anal-

ysis method is validated by numerical examples.

The proposed method may serve as the basis for structural

optimization of rarefied gas flows.
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(b) α2 = 0.5

(c) α2 = 0

Fig. 10: x−velocity distribution in the cavity when the

bottom-left corner is filled with different α2.
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