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For the calculation of elastic structure frequency response, a commonly used method is 

the full mode method (FM). However, for a frequency range, this approach tends to be 

computationally expensive, especially in the process of topology optimization. Therefore, 

this study proposes to use the mode displacement method (MDM), which is one of the 

mode reduction methods. Similarly, for topology optimization in the frequency range, 

using this method to calculate the adjoint operator can greatly reduce the calculation 

cost of topological derivatives. The results show that in frequency range, using MDM can 

significantly improve the efficiency of calculating frequency response and topological 

derivatives while ensuring a certain accuracy. 
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1. Introduction

In numerical calculation of the response of a structure to a

single frequency, a commonly used method is called the full 

mode method (FM), which provides quite accurate results. 

However, when calculating the response in a frequency interval, 

the calculation cost is very expensive because the response of 

different frequencies needs to be repeatedly calculated, and all 

modes of the discrete structure will be used each time. In 

practical situations, we are often interested in the low-frequency 

response. Therefore, mode reduction methods are becoming 

increasingly popular. These methods utilize only a few modes of 

the discrete structure, thereby reducing computational cost 

while maintaining accuracy. The mode displacement method 

(MDM) is one of the mode reduction methods used in this paper. 

It has a significant advantage when applied to the calculation of 

frequency band responses. When calculating multiple frequency 

responses with MDM, the eigenfrequencies and eigenvectors 

only need to be calculated once. Each subsequent frequency 

responses calculation involves only simple superposition, which 

significantly reduces the computational cost compared to FM. 1 
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In the context of frequency domain topology optimization, 

mode reduction methods are often applied. The first type is 

based on modal superposition，Ma(1) used MDM combined with 

the density-based method to perform optimization of the elastic 

structure. Liu(2) compared the optimization of MDM and mode 

acceleration method (MAM)(3). Among them, MAM has more 

calculation cost than MDM, but its accuracy is slightly higher. 

The second type is based on series expansion, such as Jensen(4) 

used Padé expansion and density-based method. Yoon(5) used 

the Quasi-Static Ritz Vector (QSRV) to make the optimization. 

The topological derivative is a new sensitivity analysis 

method, which is different from the previous gradient-based 

sensitivity analysis. Otomori(6), Filho(7) used topological 

derivatives to optimize static problems. Lopes(8) used a method 

based on topological derivatives to perform multi-load topology 

optimization of static problems. Giusti(9) used the topological 

derivative for topology optimization of anisotropic materials. 

Isakari(10) derived the topological derivative of the eigenvalue 

objective function based on the Helmholtz equation structure. 

Yamada(11) used this approach to optimize the response at 

specific frequency. When performing sensitivity analysis for non-

self-adjoint situations, it is also necessary to calculate the 
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adjoint operator of the topological derivative. The adjoint 

operator is usually obtained by solving the adjoint problem, 

which is also a computationally intensive process. In previous 

research, Hoshuku(12) used Padé approximation to approximate 

frequency response and topological derivative. In this study, 

MDM is also proposed for solving the adjoint problem of 

frequency band responses. 

Overall, this paper aims to explore efficient methods for 

calculating the frequency response and topological derivatives of 

elastic structures. Using MDM for frequency response 

calculation and combining it with topological derivative to 

achieve efficient frequency band optimization. Numerical 

experiments will be performed to verify the effectiveness and 

efficiency of the proposed method, and comparisons with the 

FM method will be presented. The results of this study 

contribute to the development of improved optimization 

techniques for elastic structures under harmonic excitation. 

2. Methods for Frequency Response Calculation

The forward problem calculation in this paper, which involves

the frequency response calculation of the structure, will be 

based on the finite element method (FEM). 

2.1. Full Mode Method (FM) 

First, let's introduce the full mode method. For a linear 

elastic structure under harmonic excitation, as shown in Figure 

1, it satisfies the following governing equations: 

Cijkluk,lj + ρω2ui = 0  in Ω  (1) 

ti = t ̅i  on Γt  (2) 

ui = u̅i  on Γu,  (3) 

where Cijkl  is elasticity tensor, ui  is frequency response, ρ  is 

material density, ti  is traction, t ̅i  is the amplitude of the

external force on boundary Γt , u̅i  is the specified displacement 

value on boundary Γu. 

Fig. 1   Elastic body problem 

The weak forms of (1) to (3) can be expressed as: 

∫ ũi,jCijkluk,l
Ω

dΩ −ω2∫ ρũiui
Ω

dΩ = ∫ t ̅iũidΓ
Γt

,    (4) 

here ũi is the test function. The matrix form of (4) is: 

(K− ω2M)u = F,    (5) 

where K is stiffness matrix, M is mass matrix, u is the vector of 

frequency response, F is load vector. Through (5), the frequency 

response u can be obtained: 

u = (K− ω2M)-1F.                       (6) 

It can be seen from (6) that for a system with n  degrees of 

freedom, obtaining its response requires the inversion operation 

of an n × n matrix. This process requires a lot of calculations, 

and computational cost increases cubically as the degree of 

freedom of the system increases. 

2.2. Mode Displacement Method (MDM) 

The Mode Displacement Method is one of the mode reduction 

methods, which can efficiently calculate the displacement 

response of a structure with reduced computational effort. It is 

particularly useful for problems involving multiple frequency 

responses, significantly reducing computation time. For a linear 

elastic structure subjected to harmonic loads, it satisfies the 

following equation: 

Cijkluk,lj − ρüi = 0  in Ω  (7) 

ti = t ̅ie
jωt  on Γt  (8) 

ui = u̅i  on Γu,  (9) 

where üi is the second derivative of displacement to time. The 

weak form of (7) to (9) is: 

∫ ũi,jCijkluk,l
Ω

dΩ +∫ ρũiüi
Ω

dΩ = ∫ t ̅ie
jωtũidΓ

Γt

.    (10) 

The matrix form of (10) is: 

Ku + Mü = T̅ejωt.                        (11) 

For a discrete system with n degree of freedoms, its normalized 

i-th order eigenvector φ
i
 satisfies:

φ
i
TMφ

i
= 1  (12) 

φ
i
TKφ

i
= ωi

2,  (13) 

where ωi represents the i-th eigenvalue of the system. For the 

displacement vector, it can be expressed using the eigenvector 

matrix Φ  as the base conversion matrix, represented by 

generalized coordinates y
i
:

u = Φy =∑φ
i
y
i

n

i=1

,   (14) 

where matrix Φ = [φ
1
,  φ

2
, …, φ

n
] . By substituting (12), (13)

and (14) into the matrix form of the governing equation (11), 

we obtain: 

ΦTMΦÿ + ΦTKΦy = ÿ + diag(ωi
2)y = ΦTT̅ejωt.       (15)

Since the load T̅ejωt  is harmonic, the response in generalized 

coordinates ÿ
i
 can also be obtained:

ÿ
i
= −ω2y

i
 .                               (16)

Substituting (16) into (15), we can obtain: 

y
i
= (ωi

2 − ω2)−1φ
i
TT̅ejωt.                  (17)

Substituting (17) back into (14), obtained: 

u =∑φ
i
y
i

n

i=1

=∑
φ

i
TT̅φ

i

ωi
2 − ω2

ejωt

n

i=1

.    (18) 

Therefore, the response amplitude should be: 
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u′ =∑
φ

i
TT̅φ

i

ωi
2 − ω2

n

i=1

.    (19) 

By reducing the modes and considering only the first l-th 

eigenvalues and eigenvectors, we can get: 

u′ =∑
φ

i
TT̅φ

i

ωi
2 −ω2

l

i=1

,    (20) 

where l ≪ n . The above formula represents the frequency 

response calculation using the MDM. 

2.3. Comparison between two methods 

Figure 2 and Figure 3 are the processes of the two frequency 

response calculation methods respectively. 

Fig. 2   Process of FM 

Fig. 3   Process of MDM 

Taking a two-dimensional cantilever beam with 6642 degrees 

of freedom as an example, with one edge subjected to uniformly 

distributed harmonic excitation as shown in Figure 4. The 

material parameters are Young's modulus E = 2e11 Pa, 

Poisson's ratio ν = 0.33, and density ρ = 7890 kg/m3. The 

frequency responses in the angular frequency range [0, 5000] are 

calculated using both methods. The response curve obtained 

using the FM method is shown in Figure 5 with blue lines, while 

the MDM results are shown in Figure 5 with red lines. Here, l 

indicates different orders of eigenvalues and eigenvectors. 

Comparing the graphics, it can be observed that when the total 

degrees of freedom of the structure are 6642, if l is greater than 

or equal to 3, approximately accurate results can be obtained. 

Fig. 4   2D cantilever beam 

(a) l = 1

(b) l = 2
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(c) l = 3

(d) l = 5

Fig. 5   When l takes 1, 2, 3 and 5 respectively, the comparison 

of MDM and FM calculation results. The blue lines are FM, 

and the red lines are MDM. When l >= 3, MDM can get 

approximately accurate results. 

Considering the example of 2D cantilever beam with 420 

degrees of freedom, we compare the accuracy achieved with 

different numbers of eigenvalues and eigenvectors used in MDM. 

In comparison with the FM method, the relationship between 

the maximum relative residual of the obtained results and the 

number is shown in Figure 6. When the number of eigenvectors 

and eigenvalues l is greater than 100, the relative residual errors 

r are typically less than 1%, and when l > 400, r = 0. The 

calculation formula for r is as follow: 

r =  a (
|uMDM − uFM|

uFM

) .                                  (21) 

Fig. 6 Relationship between the maximum relative residual of 

the obtained results and the number of selected modes. 

Compare the computation time of the two methods. We use 

m to represent the number of samples in the frequency interval, 

t0 to represent the calculation time of FM to calculate a certain 

frequency response. The total time of frequency response in the 

calculation interval is T0 = m ∙ t0 . For MDM, we use t1  to 

represent the time required for calculate the first few modes, t2 

to represent the time required to superpose for response at a 

certain frequency. In this way, the total time for using MDM to 

calculate the frequency response in the interval is T1 = t1+ m ∙

t2. Using the cantilever beam mentioned above as the example. 

The MDM uses the first 10 order modes, and the single 

frequency response is calculated in two methods. t0 is 0.003s. t1 

is 0.005s and t2 is less than 0.001s. So for a single frequency, t1+ 

t2 > t0, FM requires less calculation time. For the response in 

frequency range, if the number of frequency samples is m=500, 

then the total time of FM is T0 = 2.5s theoretically, and the 

total time of MDM is T1 = 0.505s. Therefore, MDM can 

significantly reduce calculation time. The selection of the 

number of modes is also affect the total time in MDM. Figure 8 

shows in MDM, the relationship between the total calculation 

time and the number of modes. It can be seen that they are 

approximately linear relation. When MDM uses all of modes, 

the time is similar to FM. 
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Fig. 7 Computation time of MDM as the number of 

eigenvectors and eigenvalues increase. 

3. Topological derivative

To find the best material distribution in the design domain，

we define a level-set function ϕ(x) to continuously evolve the

new boundary. The updating of the level-set function can be

done through the following reaction-diffusion equation:

{

∂ϕ

∂t
= K(−𝒯 + τ∇2ϕ)    i   

∂ϕ

∂n
= 0     ∂ \∂Γ𝑡

 ϕ = 1     ∂Γ𝑡

  ,    (22) 

where t is the fictitious time, K is the coefficient of propor-

tionality, τ is a regularization parameter for the fictitious inter-

face energy, D represents the design domain. 𝒯  is so-called 

topological derivative, which determines whether the material 

should exist at each node, and the evolution direction of the 

level-set function boundary. 

In this paper, topological derivatives are performed to make 

the sensitivity analysis. The topological derivatives represent 

the effect of a small hole appearing in the structure on the 

growth or decrease of the objective function. As shown in Figure 

5, when a small hole Ωϵ with a radius ϵ appears in the domain 

Ω, the objective functional J undergoes a change δJ. Therefore, 

the influence of the hole on the objective function can be 

expressed as: 

𝒯 =  i 
𝜖→0

(J+ δJ) − J

f(ϵ)
=  i 

𝜖→0

δJ

f(ϵ)
,                        (23) 

where f(ϵ) is a positive function that f(ϵ) → 0 when ϵ → 0. J is 

the objective functional. 

Fig. 8   Design domain Ω generate a small hole Ωϵ 

The topological derivatives can be calculated by using the 

adjoint method. For a single frequency boundary integral 

objective functional: 

F=∫ f(ui,ti)dΓ
Γ

,  (24) 

according to references(11)(13), the topological derivative for it 

can be calculated by: 

𝒯ω =
3(1− 𝑣)

2(1+ 𝑣)(7− 5𝑣)
{
−(1− 14𝑣 + 15𝑣2)E

(1− 2𝑣)2
𝛿ij𝛿kl

+ 5E(𝛿ik𝛿jl + 𝛿il𝛿jk)} ũi,j
0 uk,l

0 − ρω2ũi
0ui

0,   (25) 

where ũi is the adjoint operator. When the problem is non-self-

adjoint, it can be obtained by solve the problem: 

Cijkluk,lj + ρω2ũi = 0  in Ω  (26) 

t̃i =
∂f(ui, ti)

∂ui
  on Γt  (27) 

ũi = −
∂f(ui, ti)

∂ti
 on Γu,  (28) 

which also can be solved by MDM in adjoint field. Through this, 

it can greatly improve the efficiency of topology optimization. 

For optimization over a frequency band, the objective function 

can be defined as a numerical integration over a frequency 

interval: 

J = ∫ Fdω
ω2

ω1

.    (29) 

Correspondingly, the topological derivative also requires 

numerical integration over the frequency interval: 

𝒯 = ∫ 𝒯ωdω
ω2

ω1

.    (30) 

To compare the accuracy of MDM in calculating topological 

derivatives, we use the aforementioned cantilever beam once 

again. We select a node on the beam, and then calculate the 

corresponding topological derivatives of the compliance 

objective. The frequency response interval is [100, 600]. The 

relative residual errors between MDM and FM are shown in 

Figure 9. It can be seen that the majority of the residuals are 

less than 1.5%. Moreover, when the number of modes exceeds 

200, the residual is less than 0.5%. 

Fig. 9 Relation between the relative residual of the topological 

derivative and the number of selected modes. 
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4. Numerical examples

In this section, optimization examples based on MDM and

topological derivatives are presented. Also, they are compared 

with results obtained by FM under the same conditions. For the 

2D cantilever beam, in design domain D, we look for the 

material distribution that minimizes the objective function J, as 

shown in Figure 10. The material parameters and boundary 

conditions remain unchanged, and the volume fraction is set to 

0.4. The objective function J is the minimum compliance in the 

frequency interval: 

J = ∫ ∫ t ̅iuidΓ
Γt

dω
ω2

ω1

,    (31) 

where ω1 = 100, ω2 = 300. The mesh of the structure contains 

16,186 degrees of freedom. In MDM, the number of eigenvectors 

and eigenvalues is l = 200. The regularization parameter τ is 

equal to 7e-4. Figures 11 and 12 show the results of the two 

methods. The structures after 50 iterations of optimization are 

shown in Figures 11(a) and 12(a). The changes in their 

respective objective functions and volume fractions with each 

iteration are presented in Figures 11(b) and 12(b), the time 

required for each optimization iteration step of FM is about 

35.29s, and MDM is about 19.60s (∆ω=1). Figure 13 shows the 

results in the frequency interval [100, 500], with all other 

parameters unchanged, the time required for each optimization 

iteration step of FM is about 69.63s, and MDM is about 34.39s 

(∆ω=1). 

Fig. 10 Example of 2D cantilever beam. D is design domain, Ω 

represents the material area, D\Ω represents the void domain. 

(a) Results after 50 iterations

(b) Changes of objective function values and volume fractions

Fig. 11 Result of MDM in frequency interval [100, 300].

(a) Results after 50 iterations

(b) Changes of objective function values and volume fractions

Fig. 12 Result of FM in frequency interval [100, 300].

(a)MDM
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(b)FM

Fig. 13 Results of MDM and FM in frequency interval [100, 500]. 

The results of MDM are basically same as FM, with slight 

differences. The changes of corresponding objective functions 

and volume fractions are also roughly same. Therefore, using 

MDM make the topology optimization can obtain basically 

accurate results. 

5. Conclusion

In calculation of frequency response in intervals, whether it is

calculating the frequency response or the adjoint variable of 

topological derivative, campare with the full mode method, 

using the mode displacement method can effectively reduce the 

computational cost and save calculation time. 

The results in Figure 12 and Figure 13 are slightly 

asymmetric. The possible reason is that we used the triangular 

elements, which lead to mesh asymmetry. Another reason may 

be the error caused by mode reduction, which is also the 

direction for improving this method in the future. 
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