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Intuitively, exact boundary representation would be the most preferable for the finite element method

(FEM) based topology optimization of structures. With exact boundary representation, the material

domain can be defined in an exact fashion, which allows imposing arbitrary boundary condition on

newly generated boundaries during optimization. However, with the conventional method to con-

strain volume (the Augmented Lagrangian for volume-constrained problems), topology optimization

with exact boundary representation encounters convergence issue. This work indicates that the dif-

ference between the FEM mesh for the stress equilibrium and that for the reaction-diffusion equation

(RDE) of level set function could be responsible for the convergence issue. In addition, the influence

of conventional volume constraint on this convergence has been examined in this study.

Key Words: Exact boundary representation, Volume constraint, Topology optimization, Topolog-

ical derivative, Finite element method

1. Introduction

In the modern manufacturing process, structural topology opti-

mization has been playing a crucial role with the development of

computer technology. As a well-established topology optimiza-

tion approach, the SIMP (solid isotropic material with penaliza-

tion) method(1, 2) interpolates material constants by using the dis-

tribution of density. In the numerical implementation, a nonzero

lower bound of Young’s modulus is set to prevent singularity in

solving the stress equilibrium equation. To prevent drawbacks of

severe degree of grayscale problem in the original SIMP method,

the level set method, in particular, the one via solving the reaction

diffusion equation (RDE), has been proposed by Yamada et al.(3)

It has since been viewed as an attracting alternative for various

topology optimization problems.(4, 5, 6, 7, 8, 9) In particular, topol-

ogy optimizations (6, 7, 8) using updated body-fitted mesh have been

successfully carried out by adopting variations of augmented La-

grangian method for volume-constrained problems. However, in
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aforementioned studies, mesh inside the void domain is still neces-

sary and a nonzero lower bound is needed to prevent the singularity

problem in solving the stress equilibrium equation. As we have

showed and compared in the appendix of the recent work (9), such

an approach can achieve convergence even with the conventional

volume constraint method since the nonzero lower bound assigned

inside void domain (similar to the SIMP method) can help stabi-

lize the optimization process. Unlike in the mainstream body-fitted

remeshing approach, exact boundary representation (no mesh as-

signed in void domain) has barely been achieved. Not to mention

that the now widely adopted topological derivative(10) for sensitiv-

ity analysis should be associated with the exact boundary represen-

tation since it bases on the idea of insertion of holes rather than the

distribution of density. The obstacle to achieving exact boundary

representation likely arises from adopting the conventional volume

constraint method.(11, 12, 13) In contrast, the recently proposed ex-

act method for volume constraint(9) has rather enabled such con-

vergence under the exact boundary representation. However, in the
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previous work (9), whether or not exact boundary representation is

achievable by adopting the conventional volume constrain method

with different penalty parameters has not been investigated. In ad-

dition, the validity of the proposed exact boundary representation

has not been examined for an extremely small constraint of volume

such as 5% of the design domain, when a deteriorated connectivity

of the reconstructed domain Ω could occur due to the sudden drop

of the actual material volume. Also, case studies of different aspect

ratio of the design domain have not been provided either. Regarding

the topology optimization with exact boundary representation, the

aim of this work is hence to further investigate the above issues such

as the influence of penalty parameters in the conventional volume

constraint method, the extreme setup of constrained volume and the

aspect ratio of the design domain.

2. The Methodology

To perform the structural topology optimization, first we define

the level-set function ϕ. The following level set function ϕ is in-

troduced to represent the material domain Ω, the material boundary

∂Ω and the complementary void domain D\Ω:


0 < ϕ(xxx) ≤ 1 for xxx ∈ Ω,

ϕ(xxx) = 0 for xxx ∈ ∂Ω,

−1 ≤ ϕ(xxx) < 0 for xxx ∈ D\Ω.

(1)

A characteristic function as defined below is necessary in perform-

ing the volume integration.

χϕ = H(ϕ) =

0 if ϕ < 0,

1 if ϕ ≥ 0.
(2)

The minimum compliance problem by considering the level set func-

tion ϕ(xxx) ∈ [−1, 1] as a spatial function inside the design domain

can be formulated as follows:

inf
ϕ

F (ϕ) = l(uuu), (3)

subject to a(uuu,vvv) = l(vvv), (4)

and G(ϕ) =

∫
D

χϕ dΩ− Vreq ≤ 0. (5)

The weak form of the governing equation reads

a(uuu,vvv) :=

∫
Ω

ε(uuu) : C : ε(vvv) dΩ, (6)

l(vvv) :=

∫
ΓN

ttt · vvv dΓ. (7)

Here D is the design domain, Vreq is the volume constraint, uuu is

the displacement, vvv is the virtual displacement, ε(uuu) is the corre-

sponding total strain, C is the fourth-order elasticity tensor and the

vector ttt is the given external boundary load. Since the boundary

representation becomes exact, the same weak form is based on the

reconstructed material domain Ω:∫
Ω

ε(uuu) : C : ε(vvv) dΩ =

∫
ΓN

ttt · vvv dΓ. (8)

The boundary value problem to update the level set function is as

follow. 
∂ϕ
∂t

= K(−T + Λ+ τ∇2ϕ) in D,

∂ϕ
∂n

= 0 on ∂D\∂ΓN ,

ϕ = 1 on ∂ΓN .

(9)

Here t is the fictitious time, K is the coefficient of proportionality, τ

is a regularization parameter for the fictitious interface energy, and

T stands for the topological derivative and can be expressed as:

T = −σ : P : ε. (10)

The normalized topological derivative can be expressed as:
T = C0T ,

C0 =

∫
D

dΩ

2
∫
D

|T |dΩ
.

(11)

The polarization tensor P for the plane stress case can be found, for

example, in Lopes et al.:(10)

P =
1

1 + ν

(
2I− 1− 3ν

2(1− ν)
I ⊗ I

)
. (12)

Verification has been made by comparing the above topological

derivative with the corresponding result from the direct FEM cal-

culation. During the numerical implementation, it is the normalized

topological derivative T that has been used.

Our finite element analysis has been carried out by FreeFEM++,(14, 15)

and it is an open-source software package that requires formulating

the weak form of governing equation to carry out the finite element

simulation. As for the remeshing process, the open-source soft-

ware package Mmg has been employed. For illustration, the design

domain D, the material domain Ω and the void domain D\Ω are

shown in Fig. 1, alongside the geometry and boundary conditions.

2.1. The augmented Lagrangian method for volume-constrained

problems(11, 12, 13, 16)

The Augmented Lagrangian for volume-constrained problems,

as referred as the conventional method, for the current step tn+1 =

t+∆t, is formulated as:

Λn+1 =


1
V
(qn + rnGn) if Gn ≥ − qn

rn

0 if Gn < qn
rn

(13)

It should be noted that all above parameters are from the previous

optimization step tn:

Gn =

∫
D

χ(ϕn) dΩ− Vreq. (14)

− 190  −



Fig.1: The schematic illustration of design domain, material
domain, complementary void domain and boundary condi-
tions. The aspect ratios for the last two numerical cases are
set as 3:1 and 6:1.

Only after knowing the current Λn+1 (and hence ϕn+1) can all other

parameters be updated as follows to be used in the next optimization

step. Given the initial values of the two parameters and the constant

γ are q1 = 0, r1 = 0.1 or 0.2 and γ = 1.025., they are updated in

the optimization process by:qn+1 = qn + rnmax(Gn,−qn/rn),

rn+1 = γrn.
(15)

2.2. The exact volume constraint method(9)

The pivotal idea of the exact volume constraint method is to split

the original RDE into two terms by letting:

ϕ = ϕ∗ + Λ ϕ̂. (16)

Once split, ϕ∗ within the interval from t to t+∆t is governed by:

∂ϕ∗

∂t
= K(−T + τ∇2ϕ∗) in D,

∂ϕ∗

∂n
= 0 on ∂D\∂ΓN ,

ϕ∗ = 1 on ∂ΓN ,

ϕ∗|t = ϕ|t.

(17)

By subtracting Eq. (17) from the original RDE Eq. (9), after the

elimination of Λ, ϕ̂ satisfies the following initial boundary value

problem:(9)



∂ϕ̂
∂t

= K(1 + τ∇2ϕ̂) in D,

∂ϕ̂
∂n

= 0 on ∂D\∂ΓN ,

ϕ̂ = 0 on ∂ΓN ,

ϕ̂|t = 0.

(18)

Owing to the Dirichlet boundary condition, analytical solution of

ϕ̂ is not attainable. Notably, Eq. (18) does not depend on either

the topological derivative or the value of ϕ. Consequently, solving

ϕ̂ just adds a one-time cost to the whole loop. In light of the time

independence, we hereafter denote:

ϕ̂ := ϕ̂|t+∆t. (19)

The volume constraint can then be viewed as an implicit equation

for Λ:

g(Λ) =

∫
D

χϕ(Λ)dΩ− Vreq = 0. (20)

For Eq. (20), Newton-Raphson iteration is needed to find Λ(9). In

the beginning of the optimization loop, as required to calculate the

volume integration, a smoothed Heaviside function capable of con-

verging to the rigorous Heaviside function has been adopted. In-

stead of an invariantly smoothed Heaviside function, a stepwise one

is adopted:

H(ϕ) = max(tanh(kϕ), 0). (21)

In the numerical implementation, we simply let k = nq + 1 (q =

0.5) at the nth time step. Besides, all other conditions, such as the

use of smoothed Heaviside function have been made identical in the

comparison between the two volume constraint methods.

3. Results and discussions

In this section, results of topology optimization by using either

the conventional or the recently proposed volume constraint method

as introduced in the preceding section will be examined and dis-

cussed.

(a) Step 8

(b) Step 30

The volume constraint is set as Vreq = 0.05, or 0.2, or 0.5, or 0.9
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(c) Step 174

Fig. 2: The remeshed material domain (each left subfigure)
and the corresponding ϕ distribution (each right subfigure)
under the exact boundary representation by using the con-
ventional augmented Lagrangian method (penalty parameter
r1 = 0.1). The volume constraint is Vreq = 0.2. Conver-
gence cannot be reached.

in this study. The other parameters can be found elsewhere (9). The

convergence criterion of structural topology optimization for ϕ is

normally defined as

∥ϕ|t+∆t − ϕt∥L∞ < 0.02. (22)

Fig. 2 plots the remeshed material domain and the corresponding

ϕ by applying the conventional volume constraint method. It has

failed to reach convergence. During its optimization process, the

remeshed and reconstructed domain has kept varying, and its vol-

ume is either much bigger or smaller than the required Vreq = 0.2.

At step 8 of Fig. 2, the reconstructed material domain is outlined

by a smooth boundary. The corresponding ϕ contour also displays

a quite smooth distribution. However, at step 30 in Fig. 2, zigzag

patterns can be spotted all along its remeshed material boundary.

The zigzag boundaries are also related to the mesh density. Under

extremely fine meshes, both volume constraint methods result in al-

most no zigzag, while the conventional method still cannot attain

convergence. Under rather coarse meshes, the recently proposed

method can not only achieve convergence, but also suppress the

zigzag pattern and hence enhance the smoothness. Likewise, the

distribution of its level set function changes into a disordered state.

The accumulated instability leads to the unnecessary insertion of

holes in the place near the traction boundary. Finally, at step 174,

the stress analysis is unable to proceed due to that the structure loses

load-carrying capacity in the horizontal direction.

For the case of penalty parameter r1 = 0.1 in the conventional

way to constrain volume, the resulted volume ratio in Fig. 3 drops

from 100% to near 20% and yet keeps fluctuating around the tar-

geted ratio. Correlating with Fig. 2, it can be known that not only

that the volume ratio is constantly varying, but the zigzag outline of

the material domain is also evolving. As a consequence, the struc-

tural compliance in Fig. 3 has a considerable fluctuation before it

Fig.3: The actual volume ratio of material and the structural
compliance under the exact boundary representation by us-
ing the conventional augmented Lagrangian method (penalty
parameter r1 = 0.1). The second last structural compliance
reaches 0.733 [N· m] before finally approaching infinity. The
volume constraint is Vreq = 0.2.

approaches infinity when the resulted structure totally loses load-

carrying capacity.

(a) Step 8

(b) Step 30
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(c) Step 70

Fig. 4: The remeshed material domain (each left subfigure)
and the corresponding ϕ distribution (each right subfigure)
under the exact boundary representation by using the con-
ventional augmented Lagrangian method (penalty parameter
r1 = 0.2). The volume constraint is Vreq = 0.2. Conver-
gence cannot be reached either.

Once the penalty parameter in the conventional method of vol-

ume constraint is doubled in Fig. 4, the convergence still cannot

be achieved. Comparing step 8 in Fig. 2 with that in Fig. 4, the

larger penalty parameter has somehow accelerated the reduction of

the material volume from the initial hole-free configuration. At the

same time, the zigzag pattern along the material boundary occurs

earlier than in Fig. 2. It is also faster for the optimization process to

reach a failed structure, whose compliance approach infinity. Com-

pared with Fig. 3, the volume ratio in Fig. 5 appears smoother and

hence fewer spikes are seen in its structural compliance curve. It

seems that the convergence issue is an inherent obstacle to achiev-

ing exact boundary representation by using conventional method of

volume constraint.

Fig. 6 plots the remeshed material domain and the correspond-

ing ϕ at different steps by using the recently proposed exact volume

constraint method.(9) Comparing step 8 in Fig. 6 with those in Fig.

2 and Fig. 4, the search process for the optimized structure is obvi-

ously more efficient by using the exact volume constraint method.

In a sharp contrast, the boundary outline in Fig. 6 is almost free of

zigzag patterns. Not only convergence has been achieved in Fig. 6,

but also the final compliance of the structure is lower than that by

using the SIMP method, whose boundary representation is based on

density and therefore not exact. Since Newton-Raphson iteration is

implemented, the volume and hence the overall optimization loop

becomes much more stable.

At the beginning, the smoothed Heaviside function was involved

in the volume integration from the distribution of ϕ. Therefore,

the constraint is rather imposed on the volume ratio of the material

that is defined by the smoothed Heaviside function. In our numeri-

cal implementation, the smoothed Heaviside function gradually ap-

proaches the real one during the optimization process. As a result,

the actual volume ratio, as seen in Fig. 7, decreases from 100% to

Fig.5: The actual volume ratio of material and the structural
compliance under the exact boundary representation by us-
ing the conventional augmented Lagrangian method (penalty
parameter r1 = 0.2). In the next optimization step, the final
compliance would approach infinity. The volume constraint
is Vreq = 0.2.

20%. By applying the exact volume constraint method, the actual

volume ratio swiftly turns into an almost horizontal line after just

20 steps. This is totally different from that in Fig. 3 or Fig. 5. The

well-constrained volume leads to no spike and almost no fluctuation

in the structural compliance curve. On the structural compliance

curve, its initial rise is just due to the sudden reduction of the actual

material volume.

Last but not least, the probable cause of the convergence issue

is to be examined. From optimization step n to step n + 1, when

Gn ≥ −qn/rn is assumed, the volume constraint equation at step

n+ 1 for the augmented Lagrangian method is:Gn+1 =
∫
D
χ(ϕn(Λn+1)) dΩ− Vreq.

Λn+1 = 1
V
(qn + rnGn)

(23)

It can be easily noted that since the update in Eq. (23) is akin to an

explicit time-stepping scheme, instability would be built up inside

the optimization loop. The change in the level set function ϕn+1

with respect to ϕn is simply governed by:

∂ϕn+1 − ∂ϕn

∂t

= K[−(T n+1 − T n) + Λn+1 − Λn + τ∇2(ϕn+1 − ϕn)]

(24)

As shown in Fig. 8, interpolation error between the two meshes

inevitably occurs during the remeshing of the actual material do-

main. In other words, this is caused by the term T n+1 − T n

and cannot be fixed since Λn+1 is explicitly determined from step

n+1 in the conventional augmented Lagrangian method. In a sharp
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(a) Step 8

(b) Step 30

(c) Step 92

Fig. 6: The remeshed material domain (each left subfigure)
and the corresponding ϕ distribution (each right subfigure)
under the exact boundary representation by using the recently
proposed exact volume constraint method. The volume con-
straint is Vreq = 0.2. Convergence has been reached.

contrast, Λn+1 in the recently proposed exact volume constraint

method is determined by Newton-Raphson iteration at the current

time step, and therefore it can offset the instability issue caused by

T n+1 − T n. Thanks to the implementation of Newton-Raphson

iteration, the overall optimization process is stabilized and hence

convergence can be attained.

Next, we replace the volume constraint from Vreq = 0.2 with an

extremely large one Vreq = 0.9 or an extremely small one Vreq =

0.05. For an extremely small constraint of volume, a deteriorated

connectivity of the reconstructed domain Ω could occur horizon-

tally due to the sudden decrease of the actual material volume. To

solve this issue, one can either start from a rough estimation of the

ϕ distribution such as the one from using a fixed and coarse mesh,

Fig.7: The actual volume ratio of material and the structural
compliance under the exact boundary representation by using
the recently proposed exact volume constraint method.

Fig.8: The FEM mesh for the stress equilibrium (left subfig-
ure) and that for the reaction-diffusion equation (RDE) of ϕ
(right subfigure). Coarse meshes are shown here for better
illustration.

or one can simply set the volume constraint at the nth step as:

Vreq,n = Vn + β(Vreq − Vn). (25)

Here Vreq,n represents the volume constraint imposed at the nth op-

timization step, Vn is the actual material volume ratio at the nth

step, Vreq is the initial volume constraint, and β ∈ [0, 1] is an

coefficient to smooth the decrease of the actual volume. Initially

β = 0.5, and at the final stage of optimization β = 1.0 ensures

that Vreq,n = Vreq, when Vn comes close enough to Vreq (e.g. within

10%).

From now on, Vreq is replaced by Vreq,n in imposing the volume

constraint at nth optimization step. Fig. 9 and Fig. 10 indicate that

our approach of exact boundary representation (by using the exact

volume constraint) is valid even for an extremely small volume con-

straint. The thin beam-like structure in Fig. 10 requires a fine mesh

density (0.004) in remeshing, otherwise the mesh resolution would
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not be enough for its slenderness.

(a) Step 10

(b) Step 43

Fig. 9: The remeshed material domain (each left subfigure)
and the corresponding ϕ distribution (each right subfigure)
under the exact boundary representation by using the recently
proposed exact volume constraint method. The volume con-
straint is Vreq = 0.9. The compliance and actual volume
ratio at Step 10 and Step 43 are 0.00110 [N·m] and 0.9601
and 0.00105 [N·m] and 0.8996, respectively.

Fig. 11 and Fig. 12 show that our approach of exact boundary

representation (by using the exact volume constraint) is valid even

when the aspect ratio in the horizontal direction becomes extremely

large than the vertical direction. Under such a situation, the topol-

ogy of the optimized structures are more complex since more holes

are introduced. Overall, the structure near the boundary traction is

seen slimmer than that near the fixed end. In Fig. 12, for the same

reason, the same very fine mesh is adopted in remeshing, otherwise

the mesh resolution would not be enough for the slenderness.

(a) Step 10

(b) Step 12

(c) Step 16

(d) Step 92

Fig. 10: The remeshed material domain (each left subfigure)
and the corresponding ϕ distribution (each right subfigure)
under the exact boundary representation by using the re-
cently proposed exact volume constraint method. The vol-
ume constraint is Vreq = 0.05. The compliance and ac-
tual volume ratio at Step 10, Step 12, Step 16, Step 30 and
Step 92 are 0.001428 [N·m] and 0.7333, 0.004964 [N·m] and
0.5533, 0.004917 [N·m] and 0.2400, and 0.02125 [N·m] and
0.04995, respectively. The zoom-in inset shows the adopted
fine mesh.

4. Conclusions

Regarding the topology optimization with exact boundary rep-

resentation, we have further investigated those aforementioned is-

sues in Section 1 such as the influence of penalty parameters in the

conventional volume constraint method, the extreme setup of con-

strained volume and the aspect ratio of the design domain. It is indi-

cated that the difference between the FEM mesh for the stress equi-

librium and that for the reaction-diffusion equation (RDE) of level
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set function could be responsible for the convergence issue. Since

the conventional volume constraint method is akin to an explicit

time-stepping scheme, instability is built up inside the optimization

loop. In this regard, the new exact volume constraint method can

stabilize the overall optimization and hence attain the convergence.

(a) Step 20

(b) Step 40

(c) Step 60

(d) Step 167

Fig. 11: The remeshed material domain (each upper subfig-
ure) and the corresponding ϕ distribution (each lower sub-
figure) under the exact boundary representation by using the
recently proposed exact volume constraint method. The vol-
ume constraint is Vreq = 0.5, and the aspect ratio of design
domain is 3:1. The compliance and actual volume ratio at
Step 20, Step 40, Step 60 and Step 167 are 0.01871 [N·m]
and 0.7709, 0.02017 [N·m] and 0.6534, 0.02570 [N·m] and
0.5004, and 0.02518 [N·m] and 0.04997, respectively.

(a) Step 30

(b) Step 40

(c) Step 50
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(d) Step 60

(e) Step 86

Fig. 12: The remeshed material domain (each upper subfig-
ure) and the corresponding ϕ distribution (each lower sub-
figure) under the exact boundary representation by using the
recently proposed exact volume constraint method. The vol-
ume constraint is Vreq = 0.5, and the aspect ratio of design
domain is 6:1. The compliance and actual volume ratio at
Step 30, Step 40, Step 50, Step 60 and Step 86 are 0.1351
[N·m] and 0.7333, 0.1483 [N·m] and 0.7467, 0.1547[N·m]
and 0.6416, 0.1637 [N·m] and 0.5934 and 0.1747 [N·m] and
0.5005, respectively. The zoom-in inset shows the adopted
fine mesh.
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