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This paper proposes a topology optimization method that employs the two-point topolog-

ical derivative as the sensitivity. The sensitivity evaluates the sensitivity of an objective

functional relative to the generation of a thin bar connecting two distant portions of

a boundary. Using this topological derivative, a topology optimization method is con-

structed based on the level set method. The proposed method drastically reduces the

likelihood of local optima in topology optimization processes. Several numerical exam-

ples are given to demonstrate the effectiveness of the proposed method.

Key Words : Topological ligament, Two-point topological derivative, Topology optimiza-

tion, Level set method, Structural optimization, Finite element method

1. Introduction

The topological derivative(1–4) is the sensitivity to emer-

gence of a small hole in the internal domain of a structure,

which can cause changes in the external shape and the topol-

ogy, i.e., the presence or absence of a hole, in a structural

optimization problem. This can allow drastic improvement

of structural performance.

Beginning with the bubble method proposed by

Eschenauer et al. to handle the drawbacks of an unchanged

topology in shape optimization(5), topology optimization us-

ing topological derivatives has been studied actively for elas-

ticity and other problems(6–14).

However, this sensitivity has a severe drawback when ap-

plied to some physics problems (e.g., elasticity and heat con-

duction), i.e., the sensitivity is uniformly zero inside a void

domain because a small floating island of structural material

in the void domain does not improve the stiffness, strength,

or conductivity of the overall structure. When an iterative

optimization process is performed using this sensitivity, ma-

terial construction is not promoted inside a void domain.

Therefore, domains that are void in the initial design are

likely to be void in the final design, i.e., the optimized de-

sign is highly dependent on the initial design.
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In contrast, in the ground structure method (15–17), the

dimension and presence or absence of each beam of a truss or

rigid frame structure is optimized. This method employs the

sensitivity to generate a new beam connecting two distant

nodes.

In analogy with this method, in this paper, we utilize

a bar generating topological derivative that generates a new

bar connecting a portion of the boundary of the void domain

with a distant portion of the boundary. This sensitivity to

generate a bar can be generalized for the generation of ar-

bitrary curvilinear ligaments(18). The sensitivity is called

an external topological derivative, topological ligament, or

two-point topological derivative. This sensitivity is utilized

in shape optimization(19) and layout optimization(20). As

shown in previous studies, the use of two-point topological

derivative for structural optimization further promotes struc-

tural changes. That is, not only does the external shape

changes or emerges in the structural domain, but the cav-

ity domain is split into two parts by the structural material

domain. By these drastic changes in structure, the highest

performance structure is more likely to be obtained.

In this study, we utilize the two-point topological deriva-

tive in topology optimization. While shape optimization

only changes the external shape during the optimization pro-
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cess, topology optimization generates new holes, which leads

to a better solution. The use of two-point topological deriva-

tive in conjunction with conventional single-point topological

derivative promotes further drastic structural changes, which

can lead to performance improvements.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the general topology optimization problem.

In Section 3, we describe the formulation of two-point topo-

logical derivative. In Section 4, a topology optimization

method is constructed using the two-point topological deriva-

tive. In Section 5, the proposed method is applied to the lin-

ear elasticity problem, and a sensitivity analysis is discussed.

This sensitivity is validated in a numerical framework in Sec-

tion 6, and several numerical examples are given in Section

7 to demonstrate the effectiveness of the proposed method.

Finally, the paper is concluded in Section 8.

2. Topology optimization problem

Based on the level set method, the topology optimization

problem is generally formulated as follows:

min
ϕ,u(ϕ)

J(ϕ, u),

subject to



ϕ(x) > 0 for x ∈ Ω

Governing Equations for u(Ω)

Gi(Ω, u) ≤ 0 for i ∈ {1, . . . , nG}

Hj(Ω, u) = 0 for j ∈ {1, . . . , nH}

, (1)

where the scalar function ϕ(x) (Rd → R, d ∈ {2, 3}) is the

level set function that defines the structural domain Ω ⊂ Rd,

u is the state variable, J is the objective functional, Gi are

inequality constraint functions, Hj are equality constraint

functions, and nG and nH are the number of constraints.

3. Definition of two-point topological derivative

Here, we consider the domain of a thin bar

Ωbar(w,x1,x2) that connects a portion of the boundary of

the void domain x1 ∈ ∂Ω to a distant portion of the bound-

ary x2 ∈ ∂Ω (Fig. 1). As can be seen, the bar has a uni-

form cross-sectional shape (or uniform width) whose cross-

sectional area (or width) is w. We assume that this bar does

not intersect the structural domain ∀β ∈ (0, 1),x1 + β(x2 −
x1) /∈ Ω, which means that the pairs of coordinates x′

1 and

x′
2 shown in Fig. 2 are excluded.

Then, we consider a topological change in which a new

bar is generated in the void domain. The two-point topo-

logical derivative D2J(x1,x2), which is a sensitivity to the

topology changes of generating a new bar, is defined as fol-

lows:

D2J(x1,x2) = lim
w→0

J(Ω ∪ Ωbar(w,x1,x2))− J(Ω)

meas(Ωbar(w,x1,x2))
, (2)

Fig. 1 Generating a bar domain.

Fig. 2 Excluded pairs of coordinates.

where meas(Ωbar) is the measure of the domain Ωbar.

4. Construction of a topology optimization method

utilizing two-point topological derivative

In this section, we describe the construction of an itera-

tive topology optimization algorithm driven by the two-point

topological derivative D2J(x1,x2) .

The topology optimization problem given in Eq. (1) is

difficult to solve directly; thus, we assume an initial value

of the level set function and update it using the topological

derivatives as follows:

ϕ′(x) + τ∇2ϕ′(x) = ϕold(x)

−K ×

D1J(x) for x ∈ Ω

hD2J(x) for x /∈ Ω
, (3)

ϕ = min{1,max{−1, ϕ′}}, (4)
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where the second term on the left side of Eq. (3) is a regular-

ization term used to obtain a smooth optimal structure(21),

τ is a regularization factor which can adjust the geometrical

complexity(21), K is a coefficient to adjust the change of the

design variable ϕ in one step, and D1J is the conventional

single point topological derivative, which leads to emergence

of a new hole. h is a small positive number, which is set to

0.1 in this study. This means that the bar domain is gen-

erated only in domains where it is very useful to improve

the objective function. The closer this value h is to 1, the

easier it is to avoid local optimums, but instead, problems

arise such as repeated appearance and disappearance of bar

domains, or the spread of domains where the value of the

level set function ϕ is around 0. Note that Eq. (4) limits the

level set function to concentrate the effect of regularization

term near the boundary, and the sensitivity D2J(x) is the

solution of the following problem:

D2J(x) = min
x1,x2∈∂Ω

D2J(x1,x2), (5)

subject to

∃α ∈ (0, 1),x = x1 + α(x2 − x1)

∀β ∈ (0, 1),x1 + β(x2 − x1) /∈ Ω
.

(6)

Here, the constraints mean that coordinate x is in the bar,

and the bar does not intersect the structural domain Ω. In

addition, from the constraints, there exists at most one x2

corresponding to x and x1.

5. Compliance minimization problem

In this section, the proposed method is applied to the

following compliance minimization problem with a volume

constraint:

min
ϕ,u

J(u) =

∫
Γin

t · udΓ,

subject to



ϕ(x) > 0 for x ∈ Ω∫
Ω
ε(u) : C : ε(v)dx =

∫
Γin t · vdΓ

u = 0 on Γfix

G(Ω) =
∫
Ω
dx− V̂ ≤ 0

, (7)

where t is a traction force vector, ε(u) is the strain tensor of

u, whose i, j component is εij(u) =
1
2
(∂ui/∂xj + ∂uj/∂xi),

C is the elastic modulus tensor, v is the test function, Γfix is

a boundary with displacement defined as zero, and V̂ is the

maximum volume. The conventional topological derivative,

which lead to a emergence of a new hole, is computed as

follows:

D1J(x) = ε(u(x)) : A : ε(u(x)), (8)

where A is the elastic moment tensor(3).

Here, we evaluate the two-point topological derivative

D2J(x1,x2) introduced in Section 3. First, we assume that

the displacement field in the presence of an infinitely thin

bar domain is approximately equal to the displacement field

in the absence of that bar domain. Then, we have

ũ(Ω) ≡ u(Ω ∪ Ωbar(w,x1,x2)) ≃ u(Ω). (9)

The above assumption is expected to hold for the generation

of thin bars, which is the target of this study. However,

if there are Dirichlet or inhomogeneous Neumann boundary

conditions at the boundaries of the newly generated domain,

or if the structural domain is divided by a thin void domain

rather than a bar being generated in a cavity, the above

assumption is not valid, and an appropriate evaluation is

required.

In addition, we assume that the stress fields are approx-

imately uniform around the thin bar domain.

The generated element supports only an axial force like

a bar element. In this case, the axial elasticity modulus

k(w,x1,x2) can be computed using Young’s modulus E as

follows:

k(w,x1,x2) =
Ew

|x1 − x2|
. (10)

Thus, the additional strain energy for Ωbar(w,x1,x2),

i.e., the change of compliance J , can be computed approxi-

mately as follows:

J(Ω ∪ Ωbar(w,x1,x2))− J(Ω)

=

∫
Ω∪Ωbar(w,x1,x2)

ε(ũ) : C : ε(ũ)dx−
∫
Ω

ε(u) : C : ε(u)dx

≃
∫
Ωbar(w,x1,x2)

ε(ũ) : C : ε(ũ)dx

≃
∫
Ωbar(w,x1,x2)

ε(u) : C : ε(u)dx

≃k(w,x1,x2)

(
(u(x1)− u(x2)) ·

(x1 − x2)

|x1 − x2|

)2

. (11)

In addition, the measure of domain Ωbar(w,x1,x2) is com-

puted as follows:

meas(Ωbar(w,x1,x2)) = w|x1 − x2|. (12)

Thus, the two-point topological derivative can be computed

approximately as follows:

D2J(x1,x2) =
E((u(x1)− u(x2)) · (x1 − x2))

2

|x1 − x2|4
. (13)

See previous studies for more detailed derivation(20,22).

5.1. Numerical implementation and computational

cost

The sensitivity D2J(x) is calculated as follows. Initialize

the value D2J(x) for each node as sufficiently large value.
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Let E be the set of edges over the boundary of the domain

Ω. Let N be the set of nodes that belong to these edges

E . For every triangles consisting of edge j in E and two

edges, which connect the node i in N and the both ends of

edge j, search the nodes in the triangle and label them as

Nij . If all the nodes in Nij belong to the void, i.e., ϕ < 0,

then calculate the sensitivity D2J(xi,xj1) and D2J(xi,xj2),

where xi is the coordinate of the node i and xj1 and xj2

are the coordinate of nodes which belong to the edge j. For

each node l in Nij , calculate D2J(xi,x∗) by interpolation

using D2J(xi,xj1) and D2J(xi,xj2), where x∗ is the coor-

dinate that satisfies the constraint Eq. (6). If the value

D2J(xi,xj2) is smaller than D2J(xl), then substitute the

value, where xl is the coordinate of node l.

In the following, we assess the computational cost of com-

puting D2J for each optimization step. Here, let n be the

number of nodes on a finite element mesh. Then, the num-

ber of nodes or edges on the boundary of voids is given

as O(n(d−1)/d). Thus, from the above calculation scheme,

the computational complexity of computing D2J is at most

O(n(d−1)/d)×O(n(d−1)/d)×O(n) = O(n2) or O(n7/3).

Since this calculation is computationally time-consuming,

we may choose appropriate steps to calculate it instead of do-

ing it for all optimization steps; however, in this study, we

simply did this calculation for all optimization steps.

6. Numerical validation of sensitivity analysis

The analytical formula for the two-point topological deriva-

tive given in Eq. (13) can be validated using the following

computational framework.

Here for a finite value of ε, we define a numerical differ-

ence D2
εJ(x1,x2) as follows:

D2
εJ(x1,x2) =

J(Ω + Ωbar(ε,x1,x2))− J(Ω)

meas(Ωbar(ε,x1,x2))
. (14)

Under the two-dimensional linear elastic condition shown in

Fig. 3 Domain and conditions for numerical validation of

sensitivity analysis.

Fig. 3 with traction force t = (0,−1)T and Young’s modu-

lus E = 200 [GPa], with the finite element method, the nu-

merically approximated values are calculated for J(Ω) and

Fig.4 Results of numerical validation of sensitivity analysis

J(Ω + Ωbar(ε,x1,x2)) for each bar of the area

meas(Ωbar(ε,x1,x2)) ∈ {0.0125× 1.8, 0.025× 1.8, 0.05× 1.8}
connecting coordinate x1 ∈
{(2.1, 0.1)T , (2.1, 0.2)T , . . . , (2.1, 0.9)T } to x2 = (3.9, 0.1)T .

In addition, the analytical value D2J(x1,x2) for the state

variables where there is no bar u(Ω) is calculated for x1 =

(2.1, y1)
T , y1 ∈ [0, 1] and x2 = (3.9, 0.1)T .

The values of D2J(x1,x2) and D2
εJ(x1,x2) are plotted

in Fig. 4. As can be seen, the values of D2
εJ(x1,x2) are

approximately consistent and become closer to the values

of D2J(x1,x2) as the area meas(Ωbar(ε,x1,x2)) becomes

smaller. This confirms the usefulness of the analytical for-

mula given in Eq. (13).

7. Numerical examples

In this section, we provide several numerical examples to

demonstrate the effectiveness of the proposed method.

Fig. 5 Domain and boundary conditions for condition 1.

In these examples, the elastic modulus of the structural

material is set to E = 200 [GPa] and the external domain of

the fixed design domain D ⊂ Rd is assumed to be void. To

avoid numerical instability, the void domain internal fixed

design domain Ω ∩ D is given Young’s modulus E = 0.1

[GPa].

Figure 5 shows the calculation condition 1. In this con-

dition, the upper limit of the volume is set to V̂ = 1.2 [m2],
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(a) Initial distribution of level set func-

tion ϕ

(b) Conventional single-point topologi-

cal derivative D1J for initial design

(c) Sensitivity D2J for initial design

(d) The optimized distribution of ϕ

when only single-point topological

derivative is used (the compliance is

12.4× 10−12).

(e) The optimized distribution of ϕ

when both the single-point and two-

point topological derivatives are used

(the compliance is 5.36× 10−12).

Fig. 6 Initial design, topological derivatives and optimized designs for condition 1.

(a) case 1, step 0 (b) case 1, step 20 (c) case 1, step 50 (d) case 1, obtained shape

(e) case 2, step 0 (f) case 2, step 20 (g) case 2, step 50 (h) case 2, obtained shape

(i) case 3, step 0 (j) case 3, step 20 (k) case 3, step 50 (l) case 3, obtained shape

(m) case 4, step 0 (n) case 4, step 20 (o) case 4, step 50 (p) case 4, obtained shape

Fig. 7 Dependency on initial configurations.

and the left and right side 0.1 [m] of D is fixed to structural

material domain. As shown in Fig. 6(a), a design of left half

consisted of structural material is set as initial design.

As shown in Fig. 6(c), two-point topological derivative

has a sensitivity to generate a new bar from upper center

point to lower right point. However, the single-point topo-

logical derivative has only a sensitivity to leave necessary

structural parts, as can be seen in Fig. 6(b). Thus, as shown

in Fig. 6(e), the optimized configuration according to the

proposed method is a double-ended support beam, which is

considered to be structurally appropriate. In contrast, the

optimized configuration according to ordinal topology opti-

mization (Fig. 6(d)) is a cantilever depending on the ini-

tial design. With the features of the structure, the value of

the objective function obtained by the proposed method is

less than half that of the conventional method. This indi-

cates that better performance is obtained using the proposed

method.

Figs. 7(a)–7(d) shows the distribution of the level set

function in the optimization process. Figs. 7(e),7(i), and

7(m) show the other initial designs. Figs. 7(f)–7(h),7(j)–

7(l), and 7(n)–7(p) show the optimization results. It can be

seen that the same optimal configurations are obtained.

Fig. 8(a) shows the domain and boundary conditions for

the condition 2. In this condition, the upper limit of the vol-

ume is set to V̂ = 0.9 [m2], and the left and upper side 0.1 [m]

of D is fixed to structural material domain. Fig. 8(b) shows

the initial design. Fig. 8(c) shows the design obtained by

only the single-point topological derivative. Fig. 8(d) shows

the design obtained by proposed method. In the design ob-

tained by proposed method, the upper fixed boundary and

the load boundary are directly connected by the structural

material, and the compliance value is improved by a factor

of 10.

8. Conclusion

This paper has proposed a topology optimization method,

which uses the two-point topological derivative. Since the

two-point topological derivative is a sensitivity to the topo-

logical changes to generate a new bar connecting two points
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(a) Domain and boundary conditions. (b) Initial distribution of

level set function ϕ.

(c) The optimized distribu-

tion of ϕ when only single-

point topological derivative

is used (the compliance is

4.0× 10−12).

(d) The optimized distribu-

tion of ϕ when both the

single-point and two-point

topological derivatives are

used (the compliance is 3.8×
10−13).

Fig. 8 Optimization settings and results for condition 2.

of boundary, the proposed method can significantly reduce

the problem of local optimum problem. Several numerical

examples were given under the condition that conventional

method are prone to local optimum solutions depending on

the initial design. The results confirm the effectiveness of

the proposed method.
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