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We propose a hybrid algorithm of the method of moments (MoM) and the characteristic

basis function method (CBFM), which can rapidly and accurately calculate angular char-

acteristics of scattered waves for electromagnetic incident waves from multiple directions.

The proposed method roughly captures characteristics of a solution by the CBFM, and

the accuracy of the solution is further controlled with the help of the Krylov subspace

method in the MoM. Also the number of sampling points of the incident plane waves

in the computation of generating the CBFs is small. We analyzed the monostatic radar

cross section pattern of two scatterers by using the proposed method. The accuracy im-

provement can be achieved by the hybrid algorithm, which is faster than the conventional

MoM.

Key Words : Method of Moments (MoM), Characteristic Basis Function Method

(CBFM), Radar Cross Section (RCS).

1. Introduction

Numerical analyses for electromagnetic scattering are stud-

ied for various purposes in engineering such as design of wire-

less communication systems and radar systems. When an-

alyzing scattering properties of a structure, a plane wave is

often used as the incident field. In general, the scattering

properties depend on the incident angle of the plane wave.

The scattered field for each incident field is often evaluated

by the radar cross section (RCS), which is the ratio of the

norm of a scattered field to that of the incident field [1].

There exist many methods to evaluate RCSs for elec-

tromagnetic scattering problems. For example, the high-

frequency approximation methods based on uniform diffrac-

tion theory [2] and the numerical methods such as the fi-

nite element method [3], the finite-difference time-domain

method [4], and the method of moments (MoM) [5] are well

known as typical methods for the analysis of the electro-

magnetic problems. Among these methods, the MoM can

analyze scattering problems in open regions with very high

accuracy. In the MoM, the integral equation are discretized

and transformed into a system of linear equations by the

Galerkin method. Since the coefficient matrix of that linear

equation is dense, it is difficult for a naive MoM to solve

large-scale problems. However, it is well known that the fast

multipole method (FMM) can compute the product of the

dense matrix and arbitrary vectors faster thus providing a

fast method of solving large-scale problems along with iter-
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ative linear solvers [6, 7].

As another approach for acceleration and reduction of

the memory usage in the MoM, the domain decomposition

methods have been considered [8, 9]. They can reduce the

computational complexity and memory usage by a low-rank

approximation of the matrix equations. Among various do-

main decomposition methods, the characteristic basis func-

tion method (CBFM) is known to be effective for problems

with multiple sources and finite periodic scatterers such as

the array antennas [10–13]. In the CBFM, scatterers are

divided into multiple cells and the characteristic basis func-

tions (CBFs) are defined as non-local basis functions in each

cell. The CBFs in each cell are obtained as a sub-matrix

solution corresponding to elementary basis functions such as

the Rao-Wilton-Glisson (RWG) function [14] with multiple

incident plane waves. In general, the number of CBFs is

much less than that of the RWG functions; hence the com-

putational cost for solving integral equations discretized with

the CBFs is smaller than that with the RWG. However, the

CBFM has a trade-off between the computational time for

generating the CBFs and accuracy of the final solution. In-

deed, it takes much computational time for generating the

CBFs if the number of incident plane waves is increased while

smaller numbers of incident waves for CBF generation leads

to poor accuracy. In order to solve this problem, we have

proposed a new type of CBF called the improved primary

CBF (IPCBF) [15, 16]. This method takes into account the

coupling effects between cells (the higher-order CBFs [17]),

−  11  −



which are solutions of the submatrix equation with waves ra-

diated from other cells as incident waves. The CBFM using

the IPCBFs is particularly useful as a way to roughly check

the angular characteristics of the scattered field.

In this paper, we propose a hybrid of the conventional

MoM and the CBFM as a method to further improve the

accuracy while taking advantages of the IPCBFs. In the pro-

posed method, the characteristics of the solution are roughly

identified by CBFM, and the accuracy of the solution is fur-

ther controlled by the MoM. The proposed method can seam-

lessly select cases where the accuracy of CBFM is sufficient,

thus mitigating the problem related to the trade-off between

accuracy and efficiency.

The article consists of the following components. First,

we present the preliminary description of the MoM in next

section. In section 3, we show detailed expression of the pro-

posed algorithm. In section 4, the validity of the formulation

is shown by numerical evaluations. Finally, we show some

concluding remarks. We use following symbols in this pa-

per. The bold and italicized symbols such as A represent

vector quantities in three-dimensional fields. The uppercase

and lowercase symbols A, a written in bold and upright

type represent matrices and vectors, respectively. The ex-

pression such as
[
A
]
ij

denotes an element of a matrix or

vector. A matrix or vector with a subscript such as Aij ,

(A)ij is a subset or a subvector, respectively. The matrix

with the superscript H represents the adjoint matrix, and

A · B =
∑
i

¯[A]i[B]i is the (complex) inner product of vec-

tors A and B. In addition, RCS means monostatic RCS,

not bistatic RCS [1].

2. Integral equations and MoM

In this section, we present a preliminary description of

the MoM.

2.1. Integral Equation

We assume that domain Ω is a perfect electric conductor,

and D = R
3 \ Ω̄ is the analysis space as shown in Fig. 1.

Γ = ∂Ω is the closed surface of the PEC. The unit normal

vector n̂ points in the direction of D. Hereinafter we assume

the time dependence to be ejωt and suppress it. The electric

field integral equation (EFIE) and the magnetic field integral

equation (MFIE) [18] are represented by

n̂× n̂×Einc(r) = −ηn̂× (T J) (r), (1)

n̂×H inc(r) = − (KJ) (r) +
1

2
J(r). (2)

Here, J(r) is the unknown surface current on Γ. The integral

Fig. 1: Definition of the domain

operators T and K are defined as

(T J) (r) = jkn̂× F.P.

∫
Γ

(
I +

1

k2
∇∇

)
G(r, r′)J(r′)dr′

≡ n̂×
(
T ′J

)
(r) (3)

(KJ) (r) = n̂× P.V.

∫
Γ

J(r′)×∇G(r, r′)dr′ (4)

Here, F.P., P.V., and I represent the finite part, the Cauchy

principal value integral, and the identity operator, respec-

tively. Also Einc and H inc denote the incident electric and

magnetic fields. The wavenumber, impedance of the free

space and imaginary unit are denoted by k, η, and j, respec-

tively. The function G(r, r′) is the fundamental solution of

Helmholtz’s equation in three-dimension space for the obser-

vation point r and the source point r′:

G(r, r′) =
e−jk|r−r′|

4π|r − r′| (5)

We have the combined field integral equation (CFIE) in the

following form:

−γn̂× n̂×Einc(r) + (1− γ)ηn̂×H inc(r)

= γηn̂× (T J) (r)− (1− γ)η (KJ) (r) +
1

2
(1− γ)ηJ(r),

(6)

where γ is coefficients of the combination of (1) and (2). We

use the CFIE for analyzing the problem in this paper.

2.2. Discretization of Integral Equations

In this analysis, the scatterers are discretized with tri-

angles and RWG basis function [14] fn(r) defined on the

triangular mesh. The unknown current J(r) is expanded

with the RWG function:

J(r) ≈
N∑

n=1

αnfn(r), αn ∈ C (7)

Taking the inner product of RWG basis and the integral

equation in (6), we obtain the matrix equation [5]

Zj = v (8)

where Z ∈ C
N×N and v ∈ C

N are respectively the impedance
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matrix and incident field vector, which are defined by[
Z
]
mn

=

∫
Γ

fm(r) · (γηn̂× (T fn) (r)

− (1− γ)η (Kfn) (r) +
1

2
(1− γ)ηfn(r))dr, (9)[

v
]
m

=

∫
Γ

fm(r) · (−γn̂× n̂×Einc(r)

+ (1− γ)ηn̂×H inc(r))dr. (10)

In the conventional MoM, we solve equation (8) with an

iterative method or a direct method to obtain the solution

as the expansion coefficient vector j =
[
α1 α2 · · · αN

]T
where the superposed T stands for the transpose of a vector.

The convergence of (8) is usually good because the dis-

cretized MFIE included in the CFIE has a small condition

number. Since the condition number of the EFIE is large,

the convergence of (8) becomes worse as the coefficient γ of

the CFIE is set to larger values. On the other hand, the

accuracy of the analysis improves [7].

3. Formulation of Proposed Method

3.1. Overview of CBFM

The CBFM is a numerical method to accelerate the MoM

by discretizing integral equations with the CBF, which in

general has smaller DOFs than the RWG functions. For

generating the CBF, the boundary of a scatterer is divided

into NCell cells. The nth CBF in cell m, denoted by cmn, is

represented as the linear combination of the RWG function:

cmn (r) =

Nm∑
i=1

cmnifΛmi
(r) (n = 1, · · ·Lm), (11)

where Nm and Λmi are the total number and index of the

RWG function in cell m, and cmni are complex coefficients.

The complex matrix Cm ∈ C
Nm×NCBF

m consisting of the co-

efficients cmni: [
Cm

]
in

= cmni. (12)

is also referred to as the CBF in cell m in this paper.

One of widely used methods to generate the CBF is as

follows. Considering scattering problems whose scatterer is a

part of the original one included in cell m, one computes the

solution of the problem with multiple incident plane waves

from s directions as wave sources. We define the solution in

cell m with the ith incident wave as jm,i and Jm by

Jm =
[
jm,1 jm,2 · · · jm,s

]
. (13)

Once the coefficient matrix Jm is calculated, the conven-

tional CBFM computes the CBF Cm by algebraically or-

thogonalizing Jm with the singular value decomposition (SVD):

Jm = UΣVH

=
[
UL US

] [ΣL

ΣS

][
VH

L

VH
S

]

� ULΣLV
H
L , (14)

where U ∈ C
Nm×r and V ∈ C

s×r are unitary matrices and

Σ ∈ C
r×r is the diagonal matrix having r singular values in

its diagonal components. Here, Σ is split into two matrices

ΣL and ΣS with the use of a threshold δSVD, namely ΣL

is the diagonal matrix with the singular values of Jm larger

than σ1δSVD while ΣS is the one with smaller singular values,

where σ1 is the largest singular value of Jm. The submatrix

of U corresponding to ΣL, denoted by UL ∈ C
Nm×NCBF

m ,

is used as the CBF Cm. The CBF Cm obviously satisfies

CH
mCm = I, which means that the coefficient vectors of the

CBFs in each cell are algebraically orthogonalized.

3.2. Proposed Algorithm

The CBFs are created from the excitation current of each

cell. One of the simplest methods to generate CBF is to

compute jm,i as solutions of scattering problems in cell m

without taking into account the mutual couplings between

cells, namely

jm,i = Z−1
mm (vi)m , (15)

where Zmm ∈ C
Nm×Nm is submatrix of the impedance ma-

trix Z formed by Nm RWG functions in cell m and (vi)m ∈
C

Nm is the subvector of the ith incident field vector vi for

cell m [10]. For vi, the plane waves propagating in the di-

rections sampled at an appropriate interval from the three-

dimensional unit sphere are used. The CBF generated from

jm,i in (15) is called the primary CBF [11]. In addition to

the primary CBFs, several types of CBFs exist, such as sec-

ondary CBFs generated from the current of other cells [10]

and higher-order CBFs [17]. In Tanaka et al. [15,16], we have

proposed IPCBFs, which iteratively include the effect of the

higher-order CBFs into the primary CBF without increas-

ing the number of basis functions. The expansion coefficient

vector j
(p)
m,i with p iterations for the IPCBF is obtained by

j
(p)
m,i = Z−1

mm

⎛
⎜⎝(vi)m −

NCell∑
n=1
n �=m

Zmnj
(p−1)
n,i

⎞
⎟⎠ . (16)

This method not only prevents the number of CBFs from

increasing, but also efficiently add the effects of the higher-

order CBFs to the primary CBFs. Note that equation (16)

can be interpreted as the solution of the MoM with p itera-

tions of the block Jacobi method. According to this idea, we

have further developed a numerical method to obtain IPCBF

with the rough use of the Krylov subspace algorithm to (8)

−  13  −



instead of (16) [19]. In our previous study [19], we have

used the block BiCGStab [20,21] for generating the IPCBF.

In fact the block BiCGStab seems appropriate for this pur-

pose since it can simultaneously solve linear systems with

multiple incident waves by generating the Krylov subspace

from the initial residuals based on the incident plane waves

with s directions. However the block-type Krylov subspace

method is not as effective as was expected since the initial

residuals calculated from plane waves with multiple direc-

tions are in general almost linearly dependent and thus the

dimension of the Krylov subspace is less than the number

of the basis functions. By this reason, we utilize the stan-

dard generalized minimal residual (GMRES) method [22] as

the Krylov subspace algorithm in this paper. Hence j
(p)
m,i is

computed one by one for each RHS vi.

One of issues of the IPCBF is a trade-off between accu-

racy and computational cost. When the interval of the inci-

dent waves for calculating the IPCBF is too wide, we cannot

calculate RCS patterns accurately even if the IPCBFs are

generated from sufficiently converged iterative solutions ob-

tained with GMRES. On the other hand, it is desirable to

use smaller numbers of incident wave sources in order to re-

duce the computational cost of IPCBF. We therefore propose

a hybrid algorithm of using CBFM and the original matrix

equation in (8) together as a way to obtain a solution with

better accuracy while using these IPCBFs. This algorithm

utilizes the feature that one may roughly capture the char-

acteristics of RCS using these IPCBFs.

In this algorithm, the IPCBF is first computed with

sparsely sampled incident wave sources and relatively large

residual norm. The IPCBF is then used to calculate the un-

known current, denoted by j(0), with CBFM. The current

j(0) is used as the initial value for the iteration in the MoM

since j(0) is expected to broadly capture the characteristics

of the correct current j. From a different point of view, one

may say that this algorithm tries to reduce the number of

iterations of the conventional MoM by improving the initial

value with the help of CBFM.

Algorithm 1 shows the proposed hybrid algorithm which

consists of three procedures. The first procedure is for the

generation of Cm for the IPCBFs. The loop for i = 1 to

s is the calculation scheme for the IPCBF Jm. In the next

loop for m = 1 to NCell, Jm is algebraically orthogonalized

and compressed by the SVD. The second procedure is for

preparing a matrix for the CBFM with the LU decomposi-

tion, which is more effective for this procedure than iterative

methods since the LU decomposition can efficiently obtain

solutions for linear equations with a small coefficient matrix

and multiple sources. The third procedure is the final itera-

Algorithm 1 Hybrid Algorithm using CBFM and MoM

procedure Coefficient Generation

for i = 1, · · · , s do

Set v for direction i from (10)

Solve Zji = v in (8) for ji with a tolerance δr.

for m = 1, · · · , NCell do

Divide ji into elements per cell jm,i

end for

end for

for m = 1, · · · , NCell do

Orthogonalize Jm � ULΣLV
H
L by (14)

Assign UL to Cm

end for

end procedure

procedure CBFM Matrix Filling

Compute ZCBF in (18)

Decompose ZCBF by using LU decomposition

end procedure

procedure Final Iteration

for i = 1, · · · , S do

Set vCBF for direction i from (19)

Solve ZCBFjCBF = vCBF in (17) for jCBF

Compute j(0) and set it as initial value

Solve Zj = v in (8) for j with a tolerance δR.

Compute current J(r) from (7)

end for

end procedure

tion scheme for obtaining the current J(r). We first calculate

jCBF, which is the solution of the discretized CFIE:

ZCBFjCBF = vCBF (17)

with the IPCBF, where

ZCBF = CHZC, (18)

vCBF = CHv, (19)

C ≡

⎡
⎢⎢⎢⎣
C1

. . .

CNCell

⎤
⎥⎥⎥⎦ . (20)

Then we apply the GMRES to the CFIE discretized with the

RWG functions with j(0) = CjCBF as the initial guess.
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The advantage of the proposed method is that it can al-

ways converge to within an arbitrary accuracy, even if the

solution of CBFM with IPCBF is not accurate. If the ac-

curacy of IPCBF is sufficient, the final iteration scheme is

not performed and the solution is obtained. In other words,

the proposed method can seamlessly select cases where the

accuracy of CBFM is sufficient, and can control the analy-

sis accuracy. In addition, IPCBFs do not require extended

regions which are used in the conventional CBFM in order

to avoid unnatural behavior of the solution near the bound-

aries of cells [10]. Furthermore, for the Krylov subspace al-

gorithm, the computation can be made more efficient with

the help of FMM [6, 7], which would further speed up the

IPCBF generation.

An advantage of the proposed method from the view-

point of program implementation is that it can use the ma-

trix solving procedure in the conventional MoM code for cal-

culating Cm and for the final iteration in the hybrid algo-

rithm. There is obviously no complication in the process

caused by the extended region. In addition, the advantage

of the CBFM implementation that the matrix equation of

the CBFM is generated simply by taking the inner product

of the coefficient Cm and (Z,v) remains unchanged. There-

fore, one can easily implement the proposed method using

any existing in-house MoM program.

4. Numerical Results

In this section, we show numerical examples with two

types of perfect electric conductor scatterers, a plate and

an almond. Hereafter the CBFM using the IPCBFs will

be referred to as “IPCBFM” in order to distinguish it from

the proposed hybrid algorithm. The residual norms of (8)

solved in the procedure of the coefficient generation and the

final iteration in Algorithm 1 are denoted by δr and δR, re-

spectively. The GMRES method and FMM are used in the

above procedure. The calculation by the standard MoM is

also performed for the comparison with these methods. We

use the RCS, denoted by σ, as the evaluation index of the

spatial distribution of scattering in the far field. The RCS σ

for the current excited by the incident plane wave Einc(r) is

expressed as follows:

σ = lim
r→∞

4πr2
∣∣Escat(r)

∣∣2∣∣Einc(r)
∣∣2 , (21)

where Escat(r) = η(T ′J)(r) is the scattered field.

4.1. Plate

We calculate the RCS pattern of the plate shown in the

Fig. 2 and evaluate its analysis accuracy and convergence.

The number of the unknowns N in the MoM is 22050. Anal-

ysis coordinate plane (the coordinate plane on which σ is

calculated ) is z − x plane (φ = 0◦ plane). We calculate the

Fig. 2: Plate

RCS pattern of 0◦ ≤ θ ≤ 90◦, Δθ = 1◦ of θ̂ polarization;

therefore, the number of the incidence S is equal to 91. The

scatterer is divided into 4, 4, and 2 cells in the x, y, and z

directions, respectively. The longest side length of the cell

lCell is 1.25λ and the total number of cells NCell is 32. We

set the coefficient γ of CFIE in (6) as 2.0× 10−1. The typi-

cal threshold value δSVD is usually around 10−3 [11]. If the

threshold is too large, one may lose necessary CBFs, which

makes it difficult to evaluate the characteristics of IPCBFM.

To prevent this, we use a smaller value 10−7 for δSVD in this

paper. In this analysis, we set the tolerance of the resid-

ual norm δR to be 10−4 at the final iteration in the hybrid

algorithm and the MoM.

TABLE 1 shows the calculation parameters for generat-

ing the CBFs. For conditions 1 to 4, the CBFs are generated

by sampling the incident plane wave from the coordinate

plane and range in which the RCS is finally computed, and

the angular intervals and the residual norms δr are varied.

The polarization of condition 1–4, 6, 7 is θ̂ and that of con-

dition 5 is φ̂. The conditions 6 and 7 have the same number

of the incident waves s as in condition 1, but the coordinate

planes to be sampled are different from in other conditions.

We analyze the effects of the residual norm δr, the angle

interval Δθ, the polarization, and the coordinate plane se-

lection on CBF generation and analysis accuracy through

these analyses.

Table 1: Parameters for the CBF generations

Condition θs φs Δθ Δφ Nθ Nφ Np(Pol.) δr

1 0◦ 0◦ 10◦ 0◦ 10 1 1 (θ̂) 10−4

2 0◦ 0◦ 10◦ 0◦ 10 1 1 (θ̂) 10−2

3 0◦ 0◦ 30◦ 0◦ 4 1 1 (θ̂) 10−4

4 0◦ 0◦ 30◦ 0◦ 4 1 1 (θ̂) 10−2

5 0◦ 0◦ 10◦ 0◦ 10 1 1 (φ̂) 10−4

6 0◦ 90◦ 10◦ 0◦ 10 1 1 (θ̂) 10−4

7 90◦ 0◦ 0◦ 10◦ 1 10 1 (θ̂) 10−4

Fig. 3 shows the number of the CBFs NCBF, the total

number of the iterations for the CBF generations TCBF and

that for the final iterations TFinal. In the hybrid algorithm, if

NCBF is small enough, the computational complexity of the

SVD (O
(
s2Nm

)
) and the LU decomposition (O

((
NCBF

)3)
)
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Fig. 3: Iteration results for the plate
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become much smaller than that of the IPCBF generation

and the final iterations. Therefore, the overall computa-

tional complexity of the hybrid algorithm will be approxi-

mately proportional to the number of these iterations. We

thus define the total number of iterations in an analysis as

TTotal(= TCBF + TFinal). We note that the number of the

iterations for the MoM TMoM is 2122. We also note that

NCBF is small enough that the matrix equation shown in

(17) can be calculated by LU decomposition.

Fig. 4 shows the root mean square error (RMSE) for each

of conditions in TABLE 1. The RMSE of the CBFM relative

to the MoM is defined by

RMSE = 10 log 10

⎛
⎝

√
1

Nθ

∑Nθ
i=1 (σ

c
i − σm

i )2

max
i

{σm
i } −min

i
{σm

i }

⎞
⎠ dB,

where σm
i (σc

i ) stands for σ computed with MoM (CBFM)

for the ith incident wave. In Fig. 4, the RMSE for the result

of the IPCBFM under the condition 1 in TABLE 1 is better

than that under the condition 2. It indicates that using a

current distribution close to the correct solution for the CBF

generation improves the accuracy of the CBFM analysis. As
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Fig. 5: RCS of the plate

can be seen from the RMSEs for the IPCBFM results under

the condition 3 and 4, this will not be the case if the number

of CBFs is not sufficient to represent the distribution of in-

duced currents for each direction of the RCS pattern. When

the CBFs are generated from the incident plane waves with

the orthogonal polarization (φ̂ polarization) in calculation

number 5, the RMSE of the IPCBFM becomes over −10 dB.

This is also the case when the plane wave is sampled from

the coordinate planes (y − z and the x − y) different from

the plane where the RCS pattern is to be obtained (z − x)

(i.e., conditions 6 and 7).

One can simply conclude from these results that more

incident wave samples are needed to further improve the ac-

curacy of the analysis. On the other hand, as the number

of samples is increased, the acceleration effect of the CBFM

to the ordinary MoM decreases. The number of sampling

points is also largely dependent on the scatterer. As shown

in Fig. 4, the hybrid algorithm solves this problem. In the

present analysis, the hybrid algorithm yields a solution with

RMSE below −50 dB, which agrees very well with the MoM

results. The total number of iterations for the calculation

number 5 to 7 in the hybrid algorithm exceeds that of MoM.

It means that the hybrid algorithm is not effective unless the

initial values are reasonable. On the other hand, if good ini-

tial values are chosen, the hybrid algorithm can speed up the

process. In the case of calculation number 1, which meets

this condition, the total number of iterations is reduced by

a factor of about 1/4.

The RCS patterns of calculation number 1 for the hybrid

method, which showed particularly high efficiency in this

analysis, are shown in Fig. 5. The analysis results agree well

with the results of the MoM.

4.2. Almond

In this section, we investigate the parameter dependency

of the proposed method by analyzing the almond-shaped

scatterer [23] in Fig. 6 whose longest length is 10λ. The
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Fig. 6: Almond

number of the unknowns N is 8244. We calculate the RCS

pattern of −90◦ ≤ θ ≤ 90◦, Δθ = 0.5◦ of θ polarization

(S = 361). TABLE 2 shows the parameters for the IPCBF

generation. In this calculation, we use two types of the

CBFs, the IPCBFs and the primary CBFs, and compare

the differences between them. We consider two types of the

cells: lCell = 1.25λ and 2.5λ per side. The scatterer is di-

vided into 8× 4× 2 cells for lCell = 1.25λ and 4× 2× 2 cells

for lCell = 2.5λ for the x, y, z directions; hence the num-

ber of the cells containing the RWGs excluding empty cells

are NCell = 60 and 16, respectively. Then, three intervals

of incident angles Δθ = 2.5◦, 5◦, and 10◦ are considered.

The angular range, the polarization, and the sampling coor-

dinate plane are the same as those for the RCS pattern in

the final solutions. The residual norm δr for the IPCBF gen-

eration is set as 10−4 or 10−2. The currents to generate the

primary CBFs is calculated in each cell with the LU decom-

position. We consider all combinations of these parameters.

The residual norm δR for final iteration and the MoM is set

to 10−6.

Table 2: Parameters for the IPCBF generations

Parameter Value

Cell Size lCell (NCell) 1.25λ (60), 2.5λ (16)

Interval Δθ (Nθ = s) 10◦ (19), 5◦ (37), 2.5◦ (73)

Polarization θ̂

Residual Norm δr 10−4, 10−2

SVD Threshold δSVD 10−7

The numbers of the CBFs NCBF are shown in Fig. 7.

Note that NCBF/N is less than one half. Smaller values

of the sampling points tend to have fewer NCBF for the

IPCBFs. On the other hand, NCBF for the primary CBFs

remained almost unchanged even though the number of the

sampling points increases. It depends only on the cell size

in the case of primary CBFs. This is because the primary

CBFs are made from the current of only one cell. In the gen-

eration of primary CBFs, there is no significant difference in

the current excited in one small cell even if the incident angle

is changed slightly in the same coordinate plane. This means

that increasing the number of incident wave samples does not

lead to an increase in information. When the incident coor-

dinate plane is not limited to that for calculating the RCS,

the primary CBF could be sufficiently rich to represent the

complex current [11]. However, this results in creating many

extra CBFs even though we only want to obtain the RCS for

a specific coordinate plane. On the other hand, the IPCBFs

are also CBFs generated for each cell, but their original cur-

rents are obtained from calculations for the entire region.

Hence the IPCBFs are subject to the effect of currents that

vary in a complicated way depending on the direction of the

incident wave in a specific coordinate plane. Therefore the

IPCBFs can generate many independent CBFs with incident

waves on a specific coordinate plane. Also it can be seen in

Fig. 7 that δr has almost no effect on the number of CBFs

for the same cell size.

Fig. 8 shows the the RMSE for the IPCBFM and hy-

brid method, and ratio of TTotal to TMoM(= 11110) for the

hybrid method. In Fig. 8a, it can be seen that accuracy of

the IPCBFM highly depends on the number of the sampling

points. On the other hand, no matter what the initial value

is, the RMSE will eventually be less than −60 dB in the hy-

brid method as shown in Fig. 8b. In other words, the hybrid

method allows IPCBFM analysis results to be controlled to

any desired level of accuracy. This is also valid when primary

CBF is used as CBF. However, since the primary CBF does

not give a good initial value, the number of iterations when

the hybrid method is used is only 0.9 times the number of

iterations when it is not used as shown in Fig. 8c. On the

other hand, when combined with IPCBF, the computation

becomes up to 5 times faster. These results indicate that

the hybrid method is particularly effective when combined

with IPCBF. Fig. 9 shows the RCS pattern of the MoM and

the hybrid method under the condition of lCell = 1.25λ and

δr = 10−4. The results obtained by the proposed method

agree well with the MoM results overall. From these results,

it can be said that the proposed method is a fast method

to obtain RCS patterns in a specific coordinate plane with

arbitrary accuracy.

5. Conclusion

For reducing the number of iterations and unknowns in

the MoM, we proposed a hybrid algorithm combining the

CBFM and the MoM by using IPCBFs. The proposed meth-

ods are formulated, and verified numerically as we analyze

the RCS of two scatterers. By using proposed methods, we

could obtain solutions with good accuracy and faster than

with conventional method. In this study, we conducted nu-

merical analyses without any preconditioning for the itera-

tive method in order to purely verify the performance of the
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proposed methods. We believe that preconditioning meth-

ods can be easily incorporated into the proposed method,

and the matrix generation and final iteration time will be

even faster. Furthermore, we realize that the validity of the

IPCBF for other integral equations than CFIE will need to

be verified. In particular, we plan to extend the ideas of

the IPCBF in the present formulation to the analysis of di-

electrics.

References

(1) E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar

Cross Section, 2nd ed. Boston, USA: Artech House,

1993.

(2) R. G. Kouyoumjian and P. H. Pathak, “A uniform geo-

metrical theory of diffraction for an edge in a perfectly

conducting surface,” IEEE Trans. Antennas Propag.,

vol. 62, no. 11, pp. 1448–1461, Nov. 1974.

(3) J.-M. Jin, The Finite Element Method in Electromag-

netics, 3rd ed. New York: Wiley-IEEE Press, 2014.

(4) A. Taflove and S. C. Hagness, Computational Electrody-

namics: The Finite-Difference Time-Domain Method,

3rd ed. Boston: Artech House, 2005.

(5) R. F. Harrington, Field Computation by Moment Meth-

ods. Piscataway, NJ: IEEE Press, 1993.

(6) J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast

multipole algorithm for electromagnetic scattering by

large complex objects,” IEEE Trans. Antennas Propag.,

vol. 45, no. 10, pp. 1488–1493, Oct. 1997.

(7) O. Ergül and L. Gürel, The Multilevel Fast Multipole

Algorithm (MLFMA) for Solving Large-Scale Compu-

tational Electromagnetics Problems. New York, USA:

Wiley-IEEE Press, 2014.

(8) A. Heldrig, J. M. Rius, J. M. Tamayo, J. Parrón, and
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