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Topology optimisation is well known as a powerful tool for designing various structures. However,

the optimal structure obtained by it can fail to handle uncertainties originating from its working

environment. For example, an acoustic device optimised at a given frequency cannot guarantee its

performance if the frequency deviates a little from the assumption. On the other hand, it is desirable

to design devices insensitive to environmental perturbation. We here develop a topology optimisa-

tion to find a robust acoustic design concerning perturbation in the exciting frequency. The design

target is characterised by the impedance boundary condition. We formulate an appropriate objec-

tive function and its topological sensitivity and then incorporate them into a topology optimisation

method with the level-set method. The feasibility of the present method is shown in a numerical

example of sound barrier designs with wide working bandwidth.
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1. Introduction

Recent years have witnessed growing and extensive demands for

high-performance designs. The best performance of a design de-

pends not only on its structural and material configurations but also

on the working environment which makes up the system. Owing to

the consideration of both aspects, topology optimisation turns out

to be one of the most flexible design tools with broad applications

such as truss structure(1), wave lens(2), wave cloak(3), and so forth.

Usually, during a standard topology optimisation (which is hence-

forth called “deterministic” optimisation in this paper), the structure

is optimised to an ideal configuration with one or multiple fixed de-

sign parameters assumed. However, even a slight perturbation in

the design parameter can, in turn, lead to a drastic deterioration in

performance since the optimum works in the inevitable presence of

uncertainty encountered in the real world. It is, therefore, of impor-

tance to take the uncertainties into account at the design stage.
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So far, several strategies have been proposed to resolve the issue.

Worst-case-based topology optimisation(4) is one of the most effi-

cient approaches. Its applicable range is, however, limited because

balancing the result obtained for the worst case with the determin-

istic optimum does not provide the structure that can handle the

“intermediate” uncertainties in a complicated situation. Another

strategy with the surrogate model(5) also has a similar weakness

because a small number of sampled possibilities may often be in-

sufficient for recovering well the physical complexity. Reliability-

based topology optimisation (6) and the Monte-Carlo method(7) get

various possible cases involved to emulate uncertainties in accurate

manners. Their expensive computation, however, keeps away the

interest of application in practice. Robust topology optimisation re-

fines the quantification of probability with the notions of expectancy

and variance. It successfully models the uncertainty with fidelity at

a relatively cheap cost. Such advantages make it a prevalent topic

for applications in classical structural optimisations such as compli-
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ance minimisation(8, 9, 10, 11).

On the other hand, little attention has been paid to wave prob-

lems. Sato et al.(12, 13) incorporated the robust topology optimisa-

tion into designs for electromagnetic wave cloaking, in which the

uncertainties in the incident frequency and angle are considered.

The robustness is evaluated by the derivatives of the objective func-

tion with respect to the incident frequency and angle. Evaluating

the frequency derivatives requires solving the Helmholtz equation

in the exterior domain with a source term. They truncate the un-

bounded region using the PML boundary condition and evaluate the

frequency derivatives with the finite element method (FEM). Usu-

ally, such an explicit evaluation with domain integrals involved is

computationally expensive and may have limited their approxima-

tion up to second order. We have, in the previous study (14), es-

tablished a boundary-element-based method to efficiently compute

the derivatives. Unlike the FEM-based one, our method does not in-

volve any volume integral and thus can naturally and efficiently deal

with the exterior acoustic field. We have also pointed out that, with

the help of automatic differentiation, we can facilitate the arbitrary

higher-order approximation of uncertainty. With these strategies,

we came up with a robust topology optimisation for acoustically

rigid structures and significantly broaden the working bandwidth of

acoustic devices compared with the second-order cases. Soft ma-

terials such as sponges and plastics are, however, preferred rather

than rigid materials because of their flexibility and cheaper costs as

usual choices for building acoustic devices. Motivated by the engi-

neering value, in this work, we extend our robust optimisation for

acoustic structures with impedance boundary conditions.

2. Problem statement of the deterministic topology optimisa-

tion

In this section, we briefly show the standard topology optimisa-

tion of deterministic type as preliminaries for presenting the pro-

posed robust topology optimisation.

We here consider the following exterior boundary value problem

(BVP) in 2D:

∇2p(x) + k2p(x) = 0 x ∈ Ω, (1)

p(x) = 0 x ∈ Γp, (2)

q(x) := n(x) · ∇p(x) = 0 x ∈ Γq, (3)

q(x) =
iρω

z
p(x) x ∈ Γz, (4)

Outgoing radiation condition for psc, (5)

where p denotes the complex amplitude of the sound pressure and q

is its normal flux across the boundary Γ := Γp ∪ Γq ∪ Γz . As de-

picted in Fig. 1, in this work we specify the normal direction n on

Γ directed from the open fluid domain Ω. k = ω/v stands for the

wavenumber, where ω and v are the angular frequency and sound

speed in Ω, respectively. ρ is the density of the inviscid and com-

pressive fluid filled in Ω. z denotes the sound impedance on Γz of

the solid filled in R2 \Ω. The sound field is assumed time-harmonic

with time dependence e−iωt. The Sommerfeld radiation condi-

tion (5) is imposed to guarantee the solution of scattering waves

psc = p − pin to be physically outgoing, where pin is the incident

field. Under the constraints defined by (1)–(5). We want to find a

solid object in a user-specified design domain D, i.e R2 \ Ω ⊂ D,

optimising the following objective function:

F (ω) =

M∑
m=1

f
(
p
(
xobs
m

))
+

∫
Γ

g(p(x), q(x))dΓ(x), (6)

where f and g are real functionals defined on some observation

points xobs
m ∈ Ω \ D for m = 1, · · · ,M and the boundary Γ,

respectively.

Fig.1: Illustration of the problem.

The level-set method is employed to operate optimisations. To

represent the configuration of a structure, we introduce a level-set

function defined as

ϕ(x) > 0 if x ∈ Ω ∩D, (7)

ϕ(x) = 0 if x ∈ Γ, (8)

ϕ(x) < 0 if x ∈ R2 \ Ω, (9)

whose evolution is governed by(15)

∂ϕ(x, t)

∂t
= [DTF ](x, t)− (DTF, ϕ)L2(D)ϕ(x, t), (10)

where

(DTF , ϕ)L2(D) =

∫
D

[DTF ](x)ϕ(x)dΩ, (11)

is the L2 inner product of DTF and ϕ in the design domain D, and

t is the fictitious time corresponding to an optimisation step. DTF

represents the topological derivative defined as

[DTF ] (x) = lim
ε↓0

[δF ]ε(x)

a(ε)
, (12)

in which [δF ]ε(x) is the change in objective functional when a cir-

cular geometric perturbation of radius ε is introduced at x, and a(ε)
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is a monotonically increasing function of ε > 0 vanishing at ε = 0.

We use a finite difference method to solve (10). At the beginning

of every optimisation step, boundary Γ is regenerated according to

the distribution of ϕ. See, for example, our previous publication(16)

for more details.

When the geometric perturbation at x is the creation of a hole

whose boundary condition is specified as the impedance bound-

ary condition with the impedance z, the topological derivative(17)

is given as

[DTF ] (x) = R

[
iρωp(x)λ(x)

z

]
, (13)

in a two-dimensional Helmholtz problem defined as (1)–(5), where

the adjoint variable λ solving the following BVP:

∇2λ(x) + k2λ(x) +

M∑
m=1

∂f
(
xobs
m

)
∂p

δ
(
x− xobs

m

)
= 0

x ∈ Ω, (14)

λ(x) = −∂g

∂q
(x) x ∈ Γp, (15)

µ(x) := n(x) · ∇λ(x) =
∂g

∂p
(x) x ∈ Γq, (16)

µ(x) =
iρω

z

(
λ+

∂g

∂q

)
(x) +

∂g

∂p
(x) x ∈ Γz, (17)

∂λ(x)

∂|x| − ikλ(x) = o

(
1√
|x|

)
as |x| → ∞, (18)

is introduced. Here, δ is the Dirac delta. The forward ((1)–(5))

and adjoint BVPs (14)–(18) can be solved by using the boundary

element method.

3. Robust topology optimisation

3.1. Objective function

In the aforementioned topology optimisation, the angular fre-

quency ω describes a monochrome oscillating state. The optimal

configuration evolves to fit this highly specific circumstance. As a

consequence, its performance might degrade drastically when the

working frequency slightly deviates from ω. If we hope to amelio-

rate such a sensitive behaviour of the optimum, we need to include

the frequency response in the vicinity of ω in the objective func-

tion. To do this, we first introduce a stochastic variable subject to

some distribution. We here assume, instead of a fixed value, that ω

follows the following normal distribution:

E[ω] :=

∫ ∞

−∞
ω
e
− (ω−ω0)2

2σ2

√
2πσ

dω = ω0, (19)

E
[
(ω − ω0)

2] = σ2, (20)

in which ω0 and σ denote the expectancy and standard deviation

of the (stochastic) angular frequncy, respectively. The higher-order

moments(18) of the perturbation in the frequency are given as

E [(ω − ω0)
n] = sn(n− 1)!!σn, (21)

for n = 1, 2 · · · where !! represents the double factorial, and sn =

(1 + (−1)n)/2 is defined. With such ω the objective function F in

(6) also becomes stochastic. The expectancy E[F (ω)] and variance

Var[F (ω)] respectively measure the average magnitude and varia-

tion of F over a frequency range of interest. With the help of Taylor

series expansion, their approximation at ω can be written as

E[F (ω)] ≃ F (ω0) +

N∑
n=1

F (n) (ω0)

n!
E [(ω − ω0)

n] , (22)

and

Var[F (ω)] ≃
N∑

n=1

N∑
m=1

[sn+m(n+m− 1)!!

−snsm(n− 1)!!(m− 1)!!]

F (n) (ω0)

n!

F (m) (ω0)

m!
σn+m, (23)

respectively. For the simplicity of notation, here and in the remain-

ing of this paper, we use F (n) to denote the nth derivative of a

variable F with respect to ω. The main idea of the robust topology

optimisation is to optimise the expectancy of F meanwhile sup-

pressing its variance. We thus define the objective function for a

robust design as

J =(1− η)F (ω0) + η

{
N∑

n=1

N∑
m=1

[sn+m(n+m− 1)

−snsm(n− 1)!!(m− 1)!!]
F (n)(ω0)

n!

F (m)(ω0)

m!
σn+m

} 1
2

,

(24)

in which the weight between two terms is adjusted with a coefficient

0 ≤ η ≤ 1. We just keep the 0th order term for the approximation

of expectancy. In such a way letting η = 0 or N < 2 in (24)

recovers the sheer deterministic objective function in (6). The stan-

dard deviation is employed instead of the variance to guarantee that

the dimensions of the first and second terms in RHS of in (24) are

identical to each other.

3.2. Topological derivative

The last subsection gives the objective function for the robust

optimisation. By the chain rule, we can express the topological

derivative corresponding to (24) as

DTJ =(1− η)[DTF (ω0)] +

{
η

N∑
n=1

M∑
m=1

[sn+m(n+m− 1)!!

− snsm(n− 1)!!(m− 1)!!]

F (n)(ω0)

n!

[DTF
(m)](ω0)

m!
σn+m

}
/
√
VarN F , (25)

where VarN F denotes the RHS of (23).

We can easily compute the angular frequency derivatives of the

objective functional F (n) in (25) by solving angular frequency dif-

ferentiated boundary integral equations(14). Also, in the previous
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study, for an exterior Helmholtz problem with the Neumann bound-

ary condition, we observe[
DTF

(n)
]
= [DTF ](n) , (26)

i.e. the differential order of an objective functional with respect to

the angular frequency and a geometric change, is commutative. It

is reasonable to infer that such commutativity also works for the

current impedance problem. In this paper, we check (26) only nu-

merically.

4. Numerical examples

4.1. Validation of the topological derivative

Fig. 2: Setup for the validation of the topological
derivative. On the red line the topological deriva-
tive is computed.

In this section, we perform a dimensionless numerical experi-

ment to validate the commutativity of the topological derivative

(26). As depicted in Fig. 2, we put a circle of radius r = 5 at

(30, 30) whose boundary is of impedance type with z = 3. In

the boundary element analysis, we discretised it into 200 constant

elements. We specify the density of the fluid as ρ = 1 and the

sound speed as v = 1. With these settings, the perpendicular sound

absorption rate of the boundary is 75%. We monitor the objec-

tive function set as F = |p(xobs)|2 with xobs = (45, 0) when a

plane wave eikx1 with k = 0.3 propagates along the x1 direction.

As the topological derivatives DTF
(n) estimates the perturbation

in the nth order angular frequency derivative of the objective func-

tion F (n), it should coincide with the following “topological differ-

ence”: [
DTDiffF

(n)
]
(x) =

F
(n)
ε (x)− F (n)

2πε
, (27)

where F (n)
ε (x)−F (n) is the perturbation in F (n) when Ωε of radius

ε is introduced at x, if ε is sufficiently small. To check this, we

computed the topological derivative as well as (27) at several points

on the red line in Fig. 2. In the experiments, we used ε = 0.0001 for

the reference. Fig. 3 and Fig. 4 shows the good agreement between

the topological derivative and difference in the cases of n = 1 and

n = 6, respectively. Since we have justified (26) numerically, we

conclude that we may use (25) in the topology optimisation for a

robust design.

Fig. 3: Comparison between the topological dif-
ference and derivative at 1st differential order

Fig. 4: Comparison between the topological dif-
ference and derivative at 6th differential order

4.2. Robust design of sound barriers

This subsection presents robust designs of sound barriers using

the proposed method. As depicted in Fig. 5, a circular initial con-

figuration of radius r = 3.2 is put at the centre of the fixed design

domain D = [−10, 10]2. We explore the optimal shapes which

minimises the sound norm F = |p(xobs)|2/2 at xobs = (15, 0)

against the incident plane wave eiωx1/v with a mean angular fre-

quency ω = 1.5. The boundary is of impedance type with z = 3

prescribed. Other material constants are the same as what we used

in Section 4.1. We specify σ = 0.075 and η = 0%, 30%, and 60%

for the robustness to different extents. To guarantee sufficient accu-

racy of approximating the frequency response(14) as σ = 5% of ω0,

the Taylor series expansion is truncated up to order N = 6. We

let the unit-amplitude incident wave with the sweeping frequency

ω ∈ (1, 2) impinge the optimal configurations shown in Fig. 6

to examine their responses. As can be seen in Fig. 7, the robust

optimum can minimise the sound norm more consistently over the
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Fig. 5: Initial settings for optimisations of sound
barriers

bandwidth [ω0 − 3σ, ω0 + 3σ]. As a contrast, at ω = 1.5 the best

performance of the deterministic optimum is observed. More deter-

ministic performance is traded off for the robustness with a larger

η specified. Fig. 8, Fig. 9 and Fig. 10 show the distribution of

sound intensity around the optimised barriers. As can be observed

in the robust designs, the size of their separate pieces has a larger

variance which accounts for the handling of various incident waves

with different wavelengths.

5. Conclusion

In this paper, we proposed a robust topology optimisation for

structures with the impedance boundary condition. The topological

derivative of a two-dimensional impedance problem has been de-

rived and numerically validated. By using the proposed method, we

successfully design sound barriers with wide working bandwidths.

Our method is well suited for designing robust wave devices and can

be conveniently extended for problems concerning uncertainties in

other design variables such as the incident angles, the density of

the fluid and so forth as long as the derivative of the objective with

respective to the relevant parameter can efficiently be computed.

Future related topics may also concern the acoustic-elastodynamic

coupled problem for more realistic modelling of soft materials, as

well as possible extensions to applications of periodic structures.

Finally, it is worth mentioning that our robust topology optimisation

is established based on the assumption that the frequency response

of the acoustic system is smooth. In a case where the smooth con-

dition is not satisfied, for example, if there is a real eigenvalue lying

in the bandwidth of interest, the Taylor approximation can be in-

accurate. It is therefore necessary to examine the distribution of

eigenvalues before applying our method to either interior problems

or metamaterials made up of periodic structures.
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(a) η = 0 (deterministic)

(b) η = 30%

(c) η = 60%

Fig. 6: Optimal configurations with different
weight η
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