
計算数理工学論文集 Vol. 21 (2021年 12月), 論文No. 10-211218 JASCOME

WEB-BASED VISUALIZATION FRAMEWORK ON

FREEFEM

Yu-Hsun LEE1) and 藤原 宏志 2)

Yu-Hsun LEE and Hiroshi FUJIWARA

1)京都大学大学院 情報学研究科 (〒 606-8501 京都市左京区吉田本町, E-mail: andylee@acs.i.kyoto-u.ac.jp)

2)京都大学大学院 情報学研究科 (〒 606-8501 京都市左京区吉田本町, E-mail: fujiwara@acs.i.kyoto-u.ac.jp)

FreeFEM is a friendly integrated numerical computation software for partial differential

equations in 2D and 3D based on the finite element methods. In the present paper, we

introduce an intuitive web interface for the visualization of numerical results calculated

by FreeFEM. With our web-based user interface, the users can easily access data interac-

tivity and explore customizable graphics on modern browsers such as Edge, Safari, and

Chrome. Also, the users can interact with a live render animation for problems with

time evolution. We include a Hypertext Transfer Protocol (HTTP) server package in our

FreeFEM dynamic loading module written in the programming language C++.

Key Words : FreeFEM, Visualization, Client-Server Model, Domain Decomposition

Method, Parallel Computation, CAE, Education of FEM

1. Introduction

In the present paper, we propose a novel visualization

framework on FreeFEM(1), which is one of the integrated

development environments for the finite element methods

(FEM). Since the default FreeFEM visualization assumes

that the program runs on the local machine, various network

and security configurations are required to visualize numer-

ical results obtained by FreeFEM on remote computers. In

order to overcome the drawbacks, we adopt web technology

to improve the usability of interactive visualization in large-

scale computation and educational purposes. The present

study shows design and implementation of interactive visu-

alization of numerical results via client-server architecture.

It depends only on open source libraries and its framework

is easily applicable to other numerical simulation environ-

ments.

FEM is a method for approximately solving differential

equations by discretizing function spaces. By virtue of its

mathematical foundations, it has been widely used not only

in research and development but also in education. In recent

years, the domain decomposition method (DDM) and par-

allel linear solvers have been commonly employed for large-

scale computations appeared in advanced research and devel-

opment. Several commercial (2)(3) and non-commercial (1)(4)

2021 年 10 月 8 日受付，2021 年 11 月 15 日受理

environments are available, and they are commonly equipped

with mesh generation on a domain of the problem, numerical

integrations, linear solvers, and visualization of results. In

other words, they enable us to concentrate on the input and

output of the problems of interest by FEM.

FreeFEM is an open-source FEM package mainly devel-

oped by J. L. Lions Laboratory in France. Since it provides

a simple original script language designed for FEM compu-

tations, users can specify domains, weak forms, and solvers

which form the central roles and characteristics of FEM

without precise knowledge of scientific programming lan-

guages and parallel computation by Message Passing Inter-

face (MPI) or OpenMP. However, its output directly to the

screen is assumed to be done on the local machine. There-

fore, it is impossible to display numerical results on the local

screen obtained with FreeFEM executed on remote machines

such as supercomputers. Moreover, the visualization tool

ffglut equipped with FreeFEM is based on OpenGL 1.0,

which is inefficient and outdated. Main development team

of FreeFEM are also planning to replace ffglut with new

client FFGraphics(5, 6) which is developed with Vulkan(7).

The purpose of this study is an improvement of FreeFEM

output issues. To this end, we adopt a client-server architec-

ture. It also provides a Web-based User Interface (WUI) to

control output information. Compare than the new client

− 57 −

FFGraphics proposed by FreeFEM team, WUI has much

more mobility than desktop client and the users do not need

to install any extra package on their computers or mobile

devices. By exploiting this feature, the web server function

is integrated in the proposed module, and thus only stan-

dard browsers are required to visualize the results in the

proposed framework. Our implementation is available from

GitHub(8), and consists of two parts; one is a dynamic load-

ing module in FreeFEM on the server-side, and the other is a

web application for rendering data in the modern browser on

client machines. Multiple users can simultaneously connect

to the server provided by the module, and they can choose

output information independently. For understanding FEM

output, isolines and bird’s eye view are presented. In order

to facilitate a multifaceted understanding of FEM computa-

tions, users can see mesh numbering and DDM status. That

is, our presented framework is also suitable for educational

purposes.

In the next section, we show the architecture of the web-

based framework. The third section is devoted to the usage

of the dynamic module and web interface. Then we will

introduce the visualization of MPI. Finally, we will show

visualization in 3D computation.

2. Architecture

The proposed client-server architecture enables users to

share the same data among different platforms. For cluster

computing, the users can visualize the result immediately

by the browsers without downloading data. For educational

purposes, students and instructors can interact with the nu-

merical result and obtain an intuitive understanding.

To implement the web-based interface, we use a client-

server architecture in this work. We include a cross-platform

non-blocking HTTP server-Mongoose(9) through the dynamic

loading interface provided by FreeFEM. Mongoose is the

most popular networking library on Github and used by var-

ious open source and commercial products(9) which ensure

the usability of the client-server communication. Over the

proposed HTTP server, we built several Web Application

Programming Interfaces (APIs) to communicate with the

data generated by FreeFEM. Moreover, we implement the

framework under multithreading architecture. Thus users

can check the visualization results in real-time during time-

stepping computation, which is introduced in Fig. 3. For the

communication between server and client, we use the gzip li-

brary libz(10) to compress the file size of numerical results at

most 95% and improve the data transmission performance.

In the client part, modern web browsers are available to

receive and process the transferred data. For the 2D images,

we use the HTML5 canvas element for raster-based render-

ing, which provides better performance with many meshes

then rendering vector graphics. For those who want to store

high resolution graphics, users can also switch it to Scalable

Vector Graphics (SVG) mode provided by svg.js(11). Ta-

ble 1 shows comparison of HTML5 canvas mode and SVG

mode.

Table 1 Comparison between HTML5 canvas and SVG in

2D mode

HTML5 canvas SVG

package built-in SVG.js

render method raster-based vector-based

performance

(30x30 square mesh,

1800 triangles)

258ms 1075ms

We also provide the bird’s eye view for the scalar field data

by using three.js(12), which is a cross-browser JavaScript

library using Web Graphics Library (WebGL). The hidden

surface removal is also processed by WebGL automatically.

Both svg.js and three.js are well known graphics libraries

in drawing 2D and 3D images.

3. Usage of the Web-based Framework

The proposed environments consists of 4 files and a folder:

• webplot.cpp: main source code

• mongoose.c, mongoose.h: Mongoose(9), a network-

ing library for C/C++

• macro ddm.idp: extended macro for MPI visualization

• index.html: main web application

• static: JavaScript packages and CSS files

The webplot.cpp is designed as a dynamic loading module

of FreeFEM, and manipulates the data from FreeFEM and

establishes web APIs communication over integrated Mon-

goose server. The macro ddm.idp will be introduced in sec-

tion 4. The proposed web application is implemented in

index.html and included libraries like svg.js and three.js

are in the static folder.

3.1. Compile

The proposed environments is available on GitHub(8). To

compile the module, the gzip library libz(10) should be

linked. After downloading the source file, use the FreeFEM

built-in command

− 58 −

$ ff-c++ mongoose.c webplot.cpp -lz

to compile the module. After the compilation, the dy-

namic module will be generated in the folder same as webplot.cpp

(the filename of generated module on Linux platform will be

webplot.so, on macOS will be webplot.dylib, and on Win-

dows will be webplot.dll).

Moreover, the static file folder and index.html should be

placed in the same directory with generated dynamic module

webplot.so.

3.2. Usage of the Module

To use the web-based interface, the users have to load the

proposed module to set up the server and APIs. Fig. 1 shows

an example to pass the data through the webplot() function

and the server() function to start the server.

load "webplot"

//load dynamic module

server ();

//start server

border ba(t=0 ,1.0){x=t; y=0; label =1;};

border bb(t=0 ,0.5){x=1; y=t; label =1;};

border bc(t=0 ,0.5){x=1-t; y=0.5; label =1;};

border bd(t=0.5 ,1){x=0.5; y=t; label =1;};

border be(t=0.5 ,1){x=1-t; y=1; label =1;};

border bf(t=0.0 ,1){x=0; y=1-t;label =1;};

mesh Th = buildmesh(ba(6)+bb(4)+bc(4)+

bd(4)+be(4)+bf(6));

fespace Vh(Th,P1);

Vh u,v;

func f = 1;

solve Function(u,v)

= int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))

- int2d(Th)(f*v) + on(1,u=0);

webplot(Th);

webplot(u,Th);

//pass data through webplot ()

show ();

//keep server thread launching

Fig. 1 Usage of the web-based module in FreeFEM edp file

Users can set following options to setup the server with

server() command, and the value inside brackets [] is the

default value:

• host[127.0.0.1] : run server on the IP address.

• port[1234] : run server on the port.

Note that the default IP address, 127.0.0.1, is only accessi-

ble from the local computer. In order to make the server

accessible from other machines via network, the IP address

of the server machine must be specified by the option. For

example, when the server is accessible through 192.168.2.1

with port 8000, the users can set the options with the follow-

ing code. The architecture of remote computing with these

example options is shown in Fig. 2.

server(host="192.168.2.1",port =8000)

//or

server(host="0.0.0.0",port =8000)

FreeFEM

module

webplot() server()

mesh data/static files/index.html

Browser

Dynamic Loading

port:8000

IP:192.168.2.1

server client

Fig. 2 Architecture of system under remote computing

For the options of figures, the users can setup the pref-

erences of the figures on the web interfaces which will be

introduced in the next subsection. The webplot() function

is equipped with an option

• cmm[""] : comment shown on the graph.

For instance, in time evolution problems, if the users need

to generate a series of plots with comments of specifying

timestep, the cmm option provides the functionality to set

the customize text as the example shown in Fig. 3.

3.3. Usage of the Web Interface

After the server has been started, the users can launch the

web application on a browser via http://<host>:<port>.

The left column of the interface provides some functional-

ities of specifying plotted materials and styles as shown in

Fig. 4. The users can click the checkboxes to change the de-

tails such as index of mesh, isolines, labels of edges, etc. to

− 59 −

load "webplot"

server ();

int TIMESTEPS =100;

...

for (i = 1; i <= TIMESTEPS; i++) {

...

webplot(phi ,Th,cmm="time:␣t="+t);

}

show ();

Fig. 3 Usage of cmm with a time evolution problem

show on the screen. The preview window is located on the

right side and will render the figure with the user’s prefer-

ences instantly. Fig. 5 shows the isolines and color bar, and

Fig. 6 shows the mesh, vertices, and triangles indices and

labels of edges. Fig. 7 and Fig. 8 show the bird’s eye view

with mesh or wireframe, whose view angle can be changed

by mouse interactively. Users can also download the figure in

PNG (available for 2D images and bird’s views) or SVG (only

for 2D images) formats as they see in the preview window.

By default, we use the HTML5 canvas for raster-based ren-

dering, and the users can also switch to SVG mode for vector

graphics by clicking the “Preview in SVG” checkbox.

Fig. 4 Preference check boxes on web interface

4. Visualization of MPI

FreeFEM includes an additional macro macro ddm.idp for

domain decomposition methods which enables us to split

the domain into several independent subdomains for parallel

Fig.5 Isolines as a result of Fig. 1. This is the default style.

Fig.6 Mesh indices and labels of edges (blue: vertex, black:

triangle, red: edge label). Edge labels are specified in border

instructions in Fig. 1

Fig. 7 Bird’s eye views with mesh as a result of Fig. 1

computing. In order to visualize results of the computations,

we extend the macro function plotMPI() in macro ddm.idp

to provide the MPI version of webplot() as shown in Fig. 9.

For the server() function, we also implement the macro

function serverMPI() to help the users to start the inte-

grated server on the root process as shown in Fig. 10. The

Fig. 11 and Fig. 12 depict the status of domain decomposi-

− 60 −

Fig. 8 Bird’s eye views with colored wireframe as a result

of Fig. 1

tion, and an example of the transient diffusion equation in

FreeFEM library(13) respectively.

load "webplot"

macro plotMPI(Th , u, Pk , def , K, params)

...

if(mpirank == 0) {

meshN[int] meshTab(mpisize);

XhPlotPrivate <K>[int] def(uTab)(mpisize);

...

for(int i = 0; i < mpisize; ++i) {

webplotMPI(uTab[i],meshTab[i],

i+1,mpisize ,params);

}

}

...

Fig. 9 Sample code of extended macro function plotMPI()

macro serverMPI(params)

if(mpirank == 0) {

server(params);

}//

Fig. 10 Sample code of macro function serverMPI()

5. 3D Computations

FreeFEM can process with 3D volume mesh and boundry

surface mesh. Similarly as stated in Section 2, our mod-

ule supports these meshes. Fig. 13 shows an example of 3D

volume mesh visualization. The users can set up the inter-

Fig. 11 Domain decomposition status with four processes

generated by plotMPI() in Fig. 9

Fig. 12 Isolines of the numerical solution and domain

decomposition status with four processes generated by

plotMPI() in Fig. 9

section view of 3D results as Fig. 14 shows. Since 3D volume

mesh contains a lot of tetrahedron elements, it is challeng-

ing to handle 3D model rendering for some mobile device.

Thus, we still optimizing the visualization for 3D computa-

tions. For the MPI computation for 3D problems, similar to

2D MPI visualization, the macro function plotMPI() is also

used.

6. Concluding remarks

In this paper, we discussed the web-based architecture for

visualization on FreeFEM. The proposed framework is pos-

sible porting to other FEM computation software which pro-

vides Application Programming Interface to let us retrieve

information such as numerical results and triangulation of

the domain. The current distribution provides visualiza-

tion of results of 2D and 3D computation and the status

of domain decomposition for MPI computation. For demon-

stration, an online gallery is hosted at https://freefem.

andylee.tw.

− 61 −

Fig. 13 Default style for 3D volume mesh

Fig. 14 Intersection view for 3D volume mesh

Acknowledgment This work was supported by JSPS

KAKENHI Grant Numbers JP20H01821.

参考文献

(1) F. Hecht, New development in freefem++, J. Numer.

Math., Vol. 20 (2012), 251–265.

(2) ABAQUS UNIFIED FEA, https://www.3ds.com/

products-services/simulia/products/abaqus/

(3) Ansys: Engineering Simulation & 3D Design Software,

https://www.ansys.com

(4) M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B.

Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes

and G. N. Wells, The FEniCS Project Version 1.5,

Archive of Numerical Software, vol. 3, 2015.

(5) F. Hecht, FreeFem-sources(feature-newplot),

https://github.com/FreeFem/FreeFem-sources/

tree/feature-newplot

(6) Q. Tessier, FreeFEM-graphic-client, https://github.

com/FreeFem/FreeFEM-graphic-client

(7) Khronos Group, Vulkan, https://www.vulkan.org

(8) Y. Lee, freefem webplot, https://github.com/

andylee830914/freefem_webplot

(9) S. Lyubka, Mongoose, https://www.cesanta.com

(10) J. Gailly, M. Adler, zlib, https://zlib.net

(11) W. Fierens, svg.js, https://svgjs.com

(12) R. Cabello, three.js, https://threejs.org

(13) heat-2d-PETSc.edp, FreeFEM Documentation,

https://github.com/FreeFem/FreeFem-sources/

tree/develop/examples/hpddm/heat-2d-PETSc.edp

− 62 −

