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This study presents a micropolar elastodynamic finite integration technique (M-EFIT) formulation

for two-dimensional (2-D) micropolar elastodynamics. In general, the classical theory of elasticity

deals with homogeneous elastic solids and does not take microscopic inhomogeneity into account.

Therefore, numerical methods based on the classical theory of elasticity cannot be used to accurately

simulate wave propagation behaviors in micropolar materials, owing to their microscopic inhomo-

geneity. In this research, we focus on the micropolar elastodynamic theory. According to the mi-

cropolar theory, three kinds of waves with different wave velocities exist in micropolar elastic solids,

of which two have dispersibility in a 2-D formulation. In this study, an EFIT is proposed for 2-D

micropolar elastodynamics. Numerical examples of wave propagation, reflection, and transmission

in 2-D micropolar elastodynamics are demonstrated to validate the proposed M-EFIT formulation.

Key Words : Elastodynamic Finite Integration Technique (EFIT), Micropolar elastodynamics,

Wave propagation, Reflection and Transmission

1. Introduction

This study presents a micropolar elastodynamic finite integra-

tion technique (M-EFIT) formulation for two-dimensional (2-D)

micropolar elastodynamics. Understanding elastic wave propaga-

tion is important in the fields of ultrasonic nondestructive testing

(UT) and seismic engineering. Therefore, many types of numerical

techniques(1)(2) for wave analysis have been developed and used in

several engineering fields. In general, the classical theory of elastic-

ity deals with homogeneous elastic solids and does not take micro-

scopic inhomogeneity into account(3). However, it has been estab-

lished that an unexplained wave propagation phenomenon occurs

under the assumption of such a linear elastic theory. For example,

the famous one of such problems has been advocated by Biot(4). In

general, only one kind of P-wave exists in homogeneous isotropic

solids. Nevertheless, Biot proved the existence of two types of P-
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waves in fluid-saturated porous solids. In addition, Eringen(5) inte-

grated the effect of microscopic inhomogeneity into the linear elas-

ticity theory, extending the linear elasticity theory(6). This extended

linear elastodynamic theory, which considers the effect of micro-

scopie inhomogenity, is called the micropolar elastodynamic theory.

Concretes, bedrocks, and human bones are examples of typical mi-

cropolar materials. According to the micropolar elastodynamic the-

ory, three kinds of waves (P-, S-, and M-waves) with different wave

velocities exist in micropolar elastic solids, of which two (S- and

M-waves) have dispersibility in 2-D in-plane problems. However,

many simulations for elastic wave propagation in such micropolar

materials use the conventional linear elastodynamic theory rather

than the micropolar elastodynamic theory because the micropolar

elastodynamic theory and its application to numerical methods are

very complex. Therefore, it is significant to develop a wave propa-

gation simulation tool based on the micropolar elastodynamic the-
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ory.

　 The finite difference time-domain method (FDTD)(7)(8) is proba-

bly the easiest way to develop such a simulation tool. However, the

drawback of the FDTD method is obscure boundary conditions. To

improve the drawback of the FDTD method, an EFIT(9) was devel-

oped. Schubert(10) solved linear and nonlinear elastodynamic prob-

lems using the EFIT. Nakahata et al.(11) analyzed wave propagation

in austenitic steel with anisotropy using EFIT. Their simulations are

valuable, but all the formulations are based on the classical elas-

todynamic theory, and no numerical examples obtained by EFIT

for wave problems considering the micropolar elastodynamic the-

ory are known to our knowledge.

Therefore, in this research, a micropolar EFIT (which is called

M-EFIT) is developed for wave propagation in micropolar elastody-

namics. In the following sections, a brief description of the microp-

olar elastodynamic theory and the EFIT formulation are described.

Time and space discretization and how to handle boundary condi-

tions are discussed. Following the demonstration of some numeri-

cal examples obtained using 2-D M-EFIT, our future research plan

is presented.

2. Micropolar elastodynamic theory

A brief description of the micropolar elastodynamic theory is

presented in this section. Unless otherwise stated, subscripts are

used throughout this paper, such as ( )i, where i equals 1 or 3. In

addition, summation over repeated subscripts is implied through-

out this paper. The equations of motion, the strain-displacement

relations, and the constitutive relations for 2-D linear isotropic mi-

cropolar elastic solids can be written, respectively, as follows:

σji,j + ρbi = ρüi (1)

ϵij = uj,i − e2ijϕ2 (2)

σij = λϵkkδij + (µ+ κ)ϵij + µϵji (3)

where ui and ϕi represent displacement and microrotation, respec-

tively. In addition, bi is the body force, ϵij is the strain, σij is the

stress, δij is the Kronecker delta, eijk is the alternating tensor, and

ρ is the density. ˙( ) and ( ),i indicate the partial derivative with

respect to time t and space xi, respectively. In the micropolar elas-

todynamic theory, the microrotation ϕi, the couple stress mij , and

the microrotation strain ψij must be considered. Their basic equa-

tions can be written as follows:

mi2,i + e2ijσij + l2 = ρJϕ̈2 (4)

ψi2 = ϕ2,i (5)

mi2 = γψi2 (6)

where li represents the body couple and J represents the micro-

inertia. Note that unlike in the case of the classical elastodynamic

theory, the stress σij and strain ϵij are not symmetric. In Eqs.(3)

and (6), λ, µ, κ, and γ represent micropolar elastic constants and

cell

Fig.1 Definition of a finite volume V with boundary S.

they can be rewritten by the corresponding physically easier inter-

pretation constants(12) as follows:

G =
2µ+ κ

2
(7)

ν =
λ

2λ+ 2µ+ κ
(8)

L =

√
γ(µ+ κ)

κ(2µ+ κ)
(9)

N =

√
κ

2(µ+ κ)
(10)

In Eqs.(7) and (8), G and ν represent the shear modulus and Pois-

son ratio, respectively. The parameter L in Eq.(9) denotes the mi-

crostructure length of a material. In addition, the non-dimensionless

parameterN in Eq.(10) shows the strength of a micropolar property.

The parameter β is introduced using the Poisson ratio in Eq.(8) as

follow:

β =
1− 2ν

2(1− ν)
(11)

This parameter β is related to cL = cT /β, where cL represents

the P-wave velocity, which does not depend on frequency. In addi-

tion, cT is given by cT =
√
G/ρ. Eqs.(1) - (6) are discretized for

time and space according to the EFIT scheme. More details of the

micropolar elastodynamics can be seen in the reference (13).

3. M-EFIT formulation

3.1. Integrations over the cell

In this M-EFIT formulation, Eqs.(1) - (6) are not directly dis-

cretized. In the EFIT, an analysis domain is represented with the

grid and then, the grid is divided into cells, as shown in Fig. 1. As-

suming that the body force bi and the body couple li are equal to
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zero and considering Gauss’s divergence theorem, equations of mo-

tion (1) for the stress and (4) for the couple stress are first integrated

with the surface S of a cell for a finite volume V , as follows:∫
V

ρüidV =

∫
S

σjinjdS (12)∫
V

ρJϕ̈2dV =

∫
S

mi2nidS +

∫
V

e2ijσijdV (13)

where ni shows the unit outward normal vector for the boundary S.

For the constitutive relations (3) and (6), the same integration ap-

proach and time derivative are considered, respectively, as follows:∫
V

σ̇ijdV =

∫
S

[λu̇knkδij + (µ+ κ)u̇jni + µu̇inj ]dS

−
∫
V

[(µ+ κ)e2ij ϕ̇2 + µe2jiϕ̇2]dV (14)∫
V

ṁi2dV = γ

∫
S

ϕ̇2nidS (15)

Substituting the subscripts of Eqs.(12) and (13) into 1 or 3 accord-

ing to the summation convention, the following three equations are

obtained as :∫
V

ρüdV =

∫
S

(σ11n1 + σ31n3)dS (16)∫
V

ρẅdV =

∫
S

(σ13n1 + σ33n3)dS (17)∫
V

ρJϕ̈2dV =

∫
S

(m12n1 +m32n3)dS +

∫
V

(σ31 − σ13)dV

(18)

where explicit engineering expressions are used, as shown by u1 =

u and u3 = w(8)(11), for simplicity. In addition, the constitutive

relations (14) and (15) can be rewritten in the same manner, as fol-

lows:∫
V

σ̇11dV =

∫
S

[(2µ+ κ+ λ)u̇n1 + λẇn3]dS (19)∫
V

σ̇33dV =

∫
S

[λu̇n1 + (2µ+ κ+ λ)ẇn3]dS (20)∫
V

σ̇31dV =

∫
S

[(µ+ κ)u̇n3 + µẇn1]dS −
∫
v

κϕ̇2dV (21)∫
V

σ̇13dV =

∫
S

[(µ+ κ)ẇn1 + µu̇n3]dS +

∫
v

κϕ̇2dV (22)∫
V

ṁ12dV = γ

∫
S

ϕ̇2n1dS (23)∫
V

ṁ32dV = γ

∫
S

ϕ̇2n3dS (24)

For Eqs.(16) - (24), spatial and time discretization are considered.

3.2. Spatial discretization for M-EFIT

In this M-EFIT formulation, Eqs. (16) - (24) must be discretized

for space and time. As previously mentioned, the EFIT requires

integration over the square cell V with the surface S, as defined in

Fig. 1. For each cell, the normal stresses σ11 and σ33 and the couple

stress m12 are represented by the values at the center of the cell, as

shown in Fig. 1. At that time, the particle velocities u̇ and ẇ, and

the microrotational velocities ϕ̇2 are arranged at the midpoints of

the edges, as shown in Fig. 1. On the other hand, the shear stresses

Fig.2 Spatial discretization of σ11, σ33 and m12 for M-EFIT.

Fig.3 Spatial discretization of u̇ and ϕ̇2 for M-EFIT.

σ31 and σ13 and the couple stress m32 are arranged at the corner

of the cell. Therefore, considering a cell enclosed by the red solid

square of the integral volume V as shown in Fig. 2, Eqs.(19), (20)

and (23) can be discretized for space, respectively, as follow:

σ̇11 ≃ 1

∆d

[
(2µ+ κ+ λ)

(
u̇(r) − u̇(l)

)
+ λ

(
ẇ(t) − ẇ(b)

)]
(25)

σ̇33 ≃ 1

∆d

[
λ
(
u̇(r) − u̇(l)

)
+ (2µ+ κ+ λ)

(
ẇ(t) − ẇ(b)

)]
(26)

ṁ12 ≃ γ

∆d

[
ϕ̇
(r)
2 − ϕ̇

(l)
2

]
(27)

where ∆d is the length of the integral volume V and the superscripts

(r), (l), (t), and (b) express the position of the physical quantity

seen from the center of the cell. Similarly, Eqs.(16) and (18) are

discretized for space using the integral volume enclosed by the red

square in Fig. 3, as follows:

ü ≃ 1

ρ̄

1

∆d

(
σ
(r)
11 − σ

(l)
11 + σ

(t)
31 − σ

(b)
31

)
(28)

ϕ̈2 ≃ 1

ρ̄J

1

∆d

(
m

(r)
12 −m

(l)
12 +m

(t)
32 −m

(b)
32

)
+

1

2

(
σ
(t)
31 + σ

(b)
31

)
− 1

2

(
σ
(t)
13 + σ

(b)
13

)
(29)
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Fig.4 Spatial discretization of w for M-EFIT.

In Eqs.(28) and (29), ρ̄ is the average density of right and left cells,

as shown in Fig. 3, which is given by

ρ̄ =
1

2
(ρ(r) + ρ(l)) (30)

where ρ(r) and ρ(l) are the densities of the right and left cells, re-

spectively. Moreover, the spatial discretization for Eq.(17) is calcu-

lated by considering the node allocation of Fig. 4 as follows:

ẅ ≃ 1

ρ̄

1

∆d

(
σ
(r)
13 − σ

(l)
13 + σ

(t)
33 − σ

(b)
33

)
. (31)

Finally, Eqs.(21), (22) and (24) are discretized according to the red

square cell in Fig.5, respectively, as follows:

σ̇31 ≃ 1

∆d

[
(µ+ κ)

(
u̇(t) − u̇(b)

)
+ µ

(
ẇ(r) − ẇ(l)

)]
− κ

2

(
ϕ̇
(t)
2 + ϕ̇

(b)
2

)
(32)

σ̇13 ≃ 1

∆d

[
(µ+ κ)

(
ẇ(r) − ẇ(l)

)
+ µ

(
u̇(t) − u̇(b)

)]
+
κ

2

(
ϕ̇
(t)
2 + ϕ̇

(b)
2

)
(33)

ṁ32 ≃ γ

∆d

[
ϕ̇
(t)
2 − ϕ̇

(b)
2

]
(34)

The left-hand sides of Eqs. (25) - (34) include the time derivative.

This time derivative is computed using the standard time integra-

tion, as described in the following section.

3.3. Time discretization for M-EFIT

In the time-domain, the stress component σ and couple stress

component m are allocated at half-time steps, whereas the parti-

cle velocities u̇ and ẇ and the microrotational velocity ϕ̇ are allo-

cated at full-time steps. Therefore, the following time discretization

Fig.5 Spatial discretization of σ31, σ13 and m32 for M-EFIT.

yields an explicit leap-frog scheme:

{σ}n+ 1
2 ≃{σ}n− 1

2 +∆t{σ̇}n (35)

{m}n+ 1
2 ≃{m}n− 1

2 +∆t{ṁ}n (36)

{u̇}n+1 ≃{u̇}n +∆t{ü}n+ 1
2 (37)

{ẇ}n+1 ≃{ẇ}n +∆t{ẅ}n+ 1
2 (38)

{ϕ̇}n+1 ≃{ϕ̇}n +∆t{ϕ̈}n+ 1
2 (39)

where ∆t represents the time interval and the superscript n denotes

multiple integers of a time step of ∆t. Nine physical quantities, σ11,

σ33, σ13, σ31, u̇, ẇ, ṁ12, ṁ32, and ϕ̇2 at each node can be obtained

by solving Eqs. (35) - (39) with initial and boundary conditions. In

general, the treatment of boundary surfaces in the EFIT is unique(9)

compared to that in FDTD(8). The treatment of boundary surfaces

in the EFIT is discussed in the next section.

3.4. Treatment of boundary surface

The EFIT is a grid-based numerical method based on the finite

differential equation and can easily and explicitly treat the bound-

ary conditions on the interface between different materials. A brief

description of how to deal with the free reflection boundaries in the

EFIT is discussed in this section. The traction t and the couple m

must be zero in the free reflection boundaries, as shown in Fig. 6.

Therefore, the following equations are satisfied:

ti = njσji = 0,　m2 = nimi2 = 0 (40)

The traction t and couple m of Eq. (40) can be rewritten on the free

reflection boundary in Fig. 6 as follows:

t1 = n1σ11 + n3σ31 = 0 (41)

t3 = n1σ13 + n3σ33 = 0 (42)

m2 = n1m12 + n3m32 = 0 (43)
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Therefore, as shown in Fig. 6, the shear stress σ31 allocated to the

free reflection boundary between air and a solid must be zero. For

this case, the shear stress σ13 and the couple stress m32 are also

located on the same node for the shear stress σ31, as shown in Fig.

1. In such a situation, however, the normal stresses, σ11 and σ33,

and the couple stress m12 cannot be allocated to the nodes of the

free reflection boundaries as well as σ31, σ13, and m32. Therefore,

it is necessary to implement a particular handling method for meet-

ing the free reflection boundary conditions for the normal stresses,

σ11 = 0 and σ33 = 0, and the couple stress, m12 = 0.

In Fig. 6, the outward unit normal vector components n1 and n3

are given by n1 = −1 and n3 = 0, respectively. Now, the stresses

σ11 and σ13 and the couple stress m12 must be zero in order to

satisfy Eqs. (41)-(43). Here, a virtual node is considered to satisfy

the normal stress σ11 = 0 on the free reflection boundary in Fig.

6. Considering the normal stress σ(l)
11 on the virtual node whose

color is red, as shown in Fig. 6, the following equation on the free

reflection boundary is derived:

1

2
(σ

(r)
11 + σ

(l)
11 ) = 0 (44)

To satisfy Eq. (44) on the free reflection boundary in Fig. 6, Eq.

(44) is substituted into Eq. (28) to yield the following equation:

ü ≃ 1

ρ̄

1

∆d

(
2σ

(r)
11

)
(45)

The same approach used for the normal stress σ11 is considered for

the normal stress σ33 and the couple m12, which are located on the

same node. Therefore, the normal stress σ33 and the couple m12

satisfy the equations, respectively, as follows:

1

2
(σ

(r)
33 + σ

(l)
33 ) = 0 (46)

1

2
(m

(r)
12 +m

(l)
12 ) = 0 (47)

This treatment can be applied to the boundary between the base

metal and the cavity with traction free.

　 In general, only the grid and node are considered in the FDTD

method. Therefore, the material parameters must be defined on the

grid nodes. However, in the EFIT, the material parameters are de-

fined for each cell. Consequently, the physical quantities on the

boundary between multiple cells are calculated by averaging the

material constants of each cell, as shown in Figs. 3, 4, and 5 be-

cause the EFIT formulation starts with the integral of the governing

equations. Since such averaging process cannot be handled by the

FDTD method, the EFIT is easier to deal with boundary conditions

than the FDTD method, as shown in this section.

4. Numerical examples

Some numerical examples are shown in this section. In the fol-

lowing numerical examples, the density ρ and the micro-inertia J

of micropolar elastic solids are set as ρ = 4.5 and J = 0.175,

respectively. In addition, the micropolar elastic constants λ, µ, κ,

and γ are equal to λ = 1.5, µ = 1.0, κ = 1.0, and γ = 0.375,

Fig. 6 The treatment on a virtual node in the vicinity of the free

reflection boundary.

Fig.7 Analysis model for elastic wave propagation in a micropolar

elastic solid.

respectively. Therefore, the parameter β is calculated as β = 1/3

using Eq. (11). These parameters were determined according to the

paper by Fukui et al.(12). In this case, the phase velocity of P-wave

is given by cL = 1.0. The grid size ∆d and the time step size ∆t

are equal to ∆d = 5.0× 10−3 and ∆t = 2.5× 10−4, respectively.

The incident source is given as the following boundary condition at

the center of the top surface of the micropolar material:

ẇin(t) = sin

(
2πt

T

)
H(T − t) (48)

where T represents the period of the incident source, which is given

by T = 1.0. In addition, the function H denotes the step function.

In addition, u̇ = ẇ = ϕ̇2 = 0 in the analysis domain are con-

sidered as the initial conditions. The workstation with the Intel(R)

Xeon(R) W-2235 CPU @ 3.80GHz and 64 GB memory is used for

the following computations.

4.1. Elastic wave propagation in a micropolar elastic solid

As a first numerical example, the elastic wave propagation in a

micropolar elastic solid, as shown in Fig. 7, is analyzed using the

proposed M-EFIT. The width wl and height hl of this model are

wl = 20 and hl = 10, respectively. The traction free boundary

condition is given at the surfaces, except for the center of the top

surface, where the incident source defined in Eq. (48) is consid-

ered. The elastic wave propagation behavior in a micropolar elastic
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Fig.8 P- and S-wave propagation in the micropolar elastic solid in

Fig. 7 at times (a) t = 12500∆t (b) 25000∆t (c) 37500∆t and (d)

50000∆t.

solid is confirmed by solving this problem.

　Fig. 8 shows the absolute value of the particle velocity,
√
u̇2 + ẇ2,

in the analysis model in Fig. 7 at times t = 12500∆t, 25000∆t,

37500∆t, and 50000∆t. As shown in Fig. 8(a), P- and S-waves

are excited by the incident source given by Eq. (48). The absolute

values of particle velocities for S-wave directly below the incident

source are small compared with those for P-wave because the inci-

dent source is given in the x3 direction, as shown in Figs. 8(a) and

(b). In addition, the reflected P-waves generated by the right, left,

and bottom surfaces can be seen in Fig. 8(d).

　 Fig. 9 demonstrates the absolute value of the particle veloc-

ity of the microrotation ϕ̇2 in a micropolar elastic solid, as shown

in Fig. 7. As shown in Figs. 9(a), (b), and (c), M-wave excita-

tion and propagation can be confirmed. Moreover, in Fig. 9(d),

the reflected M-waves from the right, left, and bottom surfaces can

be seen before the incident M-wave excited by Eq. (48) arrives at

these surfaces. This is because the mode conversion of P-wave re-

flection, as shown in Fig. 8, at each surface occurs. In general, the

explicit M-wave velocity cannot obtain in the time-domain. How-

ever, velocities of M-wave are almost the same as those of S-wave

at several frequencies in the frequency-domain(12). Therefore, it is

expected that the M-wave speed is approximately equal to S-wave

one in the time-domain. Indeed, we can see that the M-wave speed

is almost the same as S-wave one from Figs. 8 and 9. The required

computational time and memory are about 5 hours and 1133MB,

respectively.

4.2. Elastic wave propagation in a bimaterial of micropolar and

isotropic solids

Next, the analysis of elastic waves in a bimaterial composed of

the micropolar solid and an isotropic solid is performed. In this

analysis, the density ρ and the micro-inertia J of an isotropic ma-

terial are given by ρ = 4.5 and J = 0.0, respectively. In addition,

the isotropic material part in Fig. 10 is modeled by providing λ, µ,

κ, and γ as λ = 1.5, µ = 1.0, κ = 0.0, and γ = 0.0, respectively.

When γ = 0.0 and κ = 0.0, Eqs. (9) for L and (10) for N are

Fig. 9 M-wave propagation in the micropolar elastic solid in Fig.

7 at times (a) t = 12500∆t (b) 25000∆t (c) 37500∆t and (d)

50000∆t.

Fig. 10 Analysis model for elastic wave propagation in a bimate-

rial of a micropolar and an isotropic elastic solid.

zero. As mentioned in Section 2, the parameter L indicates the rep-

resentative length for microstructure and N shows the micropolar

property. Therefore, the isotropic solid can be considered in the M-

EFIT formulation by considering the micropolar elastic constants

γ = 0.0 and κ = 0.0. The width wl and height hl of each solid are

given byw = 20.0 and h = 5.0, respectively. The other parameters

and the incident source are the same as those used in the previous

analysis.

　Fig. 11 shows the absolute value of the particle velocity,
√
u̇2 + ẇ2,

in the analysis model in Fig. 10. In each inset figure of Fig. 11,

the horizontal solid line drawn in the center indicates the interface

between the micropolar and isotropic solid, and the material inter-

face is perfectly connected. As shown in Figs. 11(a) and (b), P-

and S-waves are excited by the incident source defined in Eq. (48).

The wave fronts of P- and S-waves are distorted by the interface, as

shown in Figs. 11(c) and (d). In addition, the head wave by S-wave

propagation can be confirmed in Figs. 11(c) and (d). Furthermore,

the reflected P-wave by the bottom interface of the isotropic solid

and the reflected S-wave by the bimaterial interface are observed.

　 Fig. 12 shows the absolute value of the particle velocity of the

microrotation ϕ̇2 in the bimaterial, as shown in Fig. 7. As shown

in Figs. 12(a) and (b), M-wave is excited because of the incident

source defined in Eq. (48). Then, M-wave is reflected by the bi-
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Fig.11 P- and S-wave propagation in the micropolar elastic solid

in Fig. 7 at times (a)t = 12500∆t (b)25000∆t (c)37500∆t and

(d)50000∆t.

Fig. 12 M-wave propagation in the micropolar elastic solid in

Fig. 7 at times (a)t = 12500∆t (b)25000∆t (c)37500∆t and

(d)50000∆t.

material interface, as shown in Fig. 12(c). However, M-wave does

not propagate in the isotropic solid. This is because M-wave cannot

exist in isotropic materials. The required computational time and

memory are about 6 hours and 1133MB, respectively.

　 These two numerical results confirmed that the P-, S- and M-

waves, propagate in micropolar elastic solids correctly, albeit qual-

itatively.

5. Conclusion

In this paper, M-EFIT for 2-D elastic wave propagation in mi-

cropolar elastic solids was proposed. The formulation of the pro-

posed M-EFIT herein is based on the micropolar elastodynamic the-

ory derived by Eringen(5)(6). The validity of the proposed M-EFIT

was confirmed by simulating P-, S- and M-wave propagation in 2-

D micropolar elastic solids. As seen in the classical elastodynamic

theory, it can be confirmed that M-wave cannot exist in the isotropic

solid side of the bimaterial. In addition, M-wave can be generated

by the mode conversion of P- and S-waves. The proposed M-EFIT

is an explicit method and can solve large-scale problems within a

relatively shorter time than other numerical methods. However, the

proposed M-EFIT cannot handle infinite regions without any mod-

ifications. Therefore, in future work, the PML(Perfectly Matched

Layer)(14) for the proposed formulation will be developed to handle

an infinite micropolar elastodynamic domain. In addition, a con-

volution quadrature-based time-domain boundary element method

(CQBEM)(15)(16) that can treat infinite regions will be developed

for 2-D micropolar elastodynamics. More complex wave propaga-

tion in a micropolar material will be analyzed using the proposed

M-EFIT by referencing some mathematical formulas about microp-

olar elastodynamic problems(17). Also, this work presented in the

paper will be extended to 3-D problems.
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