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This paper discusses the topological derivative for objective functionals associated with

the tangent derivatives of physical quantities such as strains and stresses on the boundary

of an elastic domain. We first show that it is necessary to adopt adjoint variables defined

in the sense of generalised function to construct the adjoint variable method for such a

topological derivative. We also show that the newly defined adjoint “variable” can easily

be computed by the boundary element method. We then implement a topology optimisa-

tion algorithm based on the level-set method using the derived topological derivative. The

effectiveness of the proposed method is demonstrated by addressing a defect identification

problem using the measured tangent component of the strain on the boundary.
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1. Introduction

With the long-foot development of computational me-

chanics and the extensive application of computer-aided en-

gineering (CAE) in many manufacturing departments, com-

puter simulation has no longer limited itself to performance

evaluation but extended to the design process for modern

manufacturers. Among simulation-based design methods,

the topology optimisation might be the most versatile one

equipped with the freedom to generate change not only on

the outer shape but also on the topology during the optimi-

sation process. For obtaining optimal results, the topology

optimisation is firstly introduced by Bendsøe and Kikuchi(1),

which is built based on homogenisation. After that, the den-

sity method is proposed by Bendsøe(2). Due to the regular-

isation necessary in both the methods, they may suffer from

so called grayscale problem. The optimised structure by the

homogenisation and density methods may include the part

between structure and cavity. To resolve the issue, another

type of the topology optimisation using the shape represen-

tation by the level-set method is introduced. The level-set

method implicitly expresses the target structural configura-

tions by the iso-surface of a scalar function. So far, several

level-set-based topology optimisation are proposed(3, 4, 5, 6).

Now, all the types of the topology optimisations mentioned

above are widely accepted and applied to various design
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problems mainly in structural mechanics.

Most literature on topology optimisation are concerning

the topics of compliance and frequency response, which par-

tially neglected actual working conditions on products. De-

sign with high stiffness may result in low durability if stress

is not taken into account(7). Thus, some authors have pro-

posed topology optimisations concerning stress distribution.

For example, Le et al(8) proposed an effective algorithm to

resolve the stress-constrained topology optimisation. Bruggi

et al(9) presented a method designing elastic structures with

minimum weight subject to compliance and local stress con-

straints. Delgado and Bonnet(10) derived the topological

derivative for stress-based shape functional.

All of the publications mentioned here deal with stresses

defined in a region as the objective functional. To the best of

the authors’ knowledge, the topology optimisation concern-

ing the boundary stress has not yet been proposed. Since

stress concentrations often occur in the vicinity of bound-

aries, it may be worthwhile to construct a topology optimi-

sation that can control the stresses on the boundary. Also,

since strain is a quantity usually measured on the bound-

ary using a strain gauge, it may also be of value for topol-

ogy optimisation to control boundary strain. It is, however,

difficult to compute the topological derivative of objective

function defined in terms of boundary stresses and strains

using the usual adjoint variable method. The essential diffi-
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culty stems from the fact that any standard adjoint variable

cannot cancel out the variation of the tangent derivative of

the boundary displacement due to the topological change.

In this study, we show that, by using an adjoint vari-

able defined as a generalised function, we can compute the

topological derivative for the tangent derivative of a physical

quantity defined on a boundary. We incorporate the derived

topological derivatives into a topology optimisation scheme

based on the level-set method(6) and the boundary element

method (BEM). We demonstrate the effectiveness of the pro-

posed method by solving an inverse problem to find cavities

from the measured strain data on the boundary.

2. Linear elastodynamics and BEM

In this section, we present basic equations for an elasto-

dynamic problem in two dimensions which serves as a con-

straint for our topology optimisation. We also present a

BEM for the elastodynamics.

2.1. Fundamental equations

We here consider a bounded region Ω ⊂ R2 filled with an

isotropic linear elastic material oscillating harmonically with

the angular frequency ω. The oscillation in Ω is governed by

the following boundary value problem:

Cijkluk,lj (x) + ρω2ui (x) = 0 x ∈ Ω, (1)

ui (x) = ūi (x) x ∈ Γu ⊂ Γ := ∂Ω, (2)

ti (x) = t̄i (x) x ∈ Γt = Γ \ Γu, (3)

where u represents the complex amplitude of the displace-

ment with which its time domain counterpart is recovered

as ℜ[u(x)e−iωt]. ti = σjinj is the traction, and σ is the

stress, n is the unit normal vector on Γ directed from Ω.

The prescribed displacement ū and traction t̄ are given on

Γu and Γt, respectively. Assuming the plane-strain state,

Cijkl = λδijδkl+µ(δikδjl+ δulδjk) represents the elastic ten-

sor which relates the stress with the strain as σij = Cijklεkl,

λ and µ are the Lamé constants, δij is Kronecker’s delta,

and ρ denotes the density of the material. With the assump-

tion of small deformation, the strain ε admits the following

expression:

εij =
1

2
(ui,j + uj,i) . (4)

2.2. Boundary element method

The integral representation of the solution in Ω for the

boundary value problem (1)–(3) is given as follows:

ui(x) = [UΓt]i(x)− [TΓu]i(x), (5)

where the operators U and T are respectively given as fol-

lows:

[UΓt]i(x) =

∫
Γ

Uij(x− y)tj(y)dΓ(y) (6)

[TΓu]i(x) =

∫
Γ

Tij(x− y)uj(y)dΓ(y) (7)

where Uij and Tij are the fundamental solution for 2D elas-

todynamics and the kernel of double layer, respectively. The

unknown quantities in (5), i.e. u on Γt, and t on Γu can be

found by solving the following boundary integral equation:

cij(x)uj(x) = [UΓt]i(x)− [TΓu]i(x), (8)

for x ∈ Γ, where the coefficient in the left-hand side is

cij(x) = δij/2 if Γ is smooth around x. On the discreti-

sation for (8), we here use the collocation with quadratic

elements.

Other than the displacement on Γ and in Ω, we can ob-

tain the strain and stress by BEM. For an interior point

x ∈ Ω, they can be computed via the gradient of the inte-

gral representation (5), the definition of the strain (4), and

so forth. For the boundary data, both the strain and stress

can be expressed by the traction and tangent derivative of

the displacement as

εij =
1

2

(
∂ui

∂s
sj +

∂uj

∂s
si

)
+
nj

2

[
1

µ

(
δil −

λ+ µ

λ+ 2µ
ninl

)
tl −

(
λ

λ+ µ
nisl + nlsi

)
∂ul

∂s

]
+
ni

2

[
1

µ

(
δjl −

λ+ µ

λ+ 2µ
njnl

)
tl −

(
λ

λ+ µ
njsl + nlsj

)
∂ul

∂s

]
,

(9)

σkl = αkliti + βkli
∂ui

∂s
, (10)

where the coefficients αkli and βkli are given as

αkli =
1

λ+ 2µ
[λδkl − 2 (λ+ µ)nknl]ni + (δkinl + δlink) ,

(11)

βkli =
2λµ

λ+ 2µ
(δkl − nknl) si

+ µ (δki − nkni) sl + µ (δli − nlni) sk, (12)

and ∂/∂s represents the operator for the tangent deriva-

tive, and s = (s1, s2)
t is the unit tangent vector satisfying

(s1, s2, 0)
t = (0, 0, 1)t × (n1, n2, 0)

t. Since the traction is ob-

tained by solving the boundary integral equation (8), one

additional task to obtain boundary strain and stress is to

evaluate the tangent derivative of the displacement ∂u/∂s

which can be computed by differentiating the basis function

for u. For simplicity, we henceforth denote ∂u/∂s as u′.

3. Topology optimisation

In this section, we present a topology optimisation re-

lated to the shape functional written in terms of stress and

strain on the boundary of an elastic material.

3.1. Objective function

Our objective is to find an optimal distribution of elastic

region Ω ⊂ D, under the constrain condition (1)–(3), min-

imising the following shape functional associated with strain

and/or stress:

J(Ω) =

∫
Γf

F (ε,σ)dΓ, (13)

where F is a functional, D is a preset design domain, and

Γf is a part of Γ i.e Γf ⊂ Γ. According to the discussion

−  112  −



in the previous section, the objective functional (13) can be

rewritten as

J =

∫
Γf

f(u′, t)dΓ, (14)

in terms of the traction and tangent derivative of the dis-

placement, where f is a functional.

is removed

Fig. 1 Topological change in Ω. An infinitesimal cavity

Ωε introduced at x0 causes the change in the objective

function as J → J + δJ(x0) along with the changes

in physical quantities such as displacement, traction,

strain, and stress.

3.2. Topological derivative

One of the key ingredients for establishing a topology

optimisation for (14) is the topological derivative. In this

section, we derive the topological derivative for (14) with

the help of the adjoint variable method. As shown in Fig. 1,

let us assume that an infinitesimal circular cavity Ωε (whose

radius and centre are ε and x0, respectively) is generated

in Ω, and the physical quantities change accordingly as, for

example, u → u + δu. We here assume that the boundary

condition on Γε := ∂Ωε is traction free. Due to the linearity

of the problem, a governing equation for the perturbations

can be obtained as

Cijklδuk,lj(x) + ρω2δui(x) = 0 x ∈ Ω \ Ωε, (15)

δui(x) = 0 x ∈ Γu, (16)

δti(x) = 0 x ∈ Γt, (17)

δti(x) = −ti(x) x ∈ Γε, (18)

where the unit normal vector on Γε is defined positive when

directed from Ω \ Ωε.

The objective function also changes accordingly as J →
J + δJ(x0). The perturbation in J is given as

δJ(x0) = ℜ
[∫

Γt

∂f

∂u′
i

δu′
idΓ +

∫
Γu

∂f

∂ti
δtidΓ

]
. (19)

Note that, to derive (19), we used the boundary conditions

(16) and (17). To evaluate (19), we introduce the adjoint

displacement ũ satisfying the following Navier’s equation:

Cijklũk,lj(x) + ρω2ũi(x) = 0 x ∈ Ω. (20)

Betti’s reciprocity theorem for δui and ũi in Ω\Ωε gives the

following identity:∫
Γ∪Γε

(
t̃iδui − ũiδti

)
dΓ = 0, (21)

in which t̃ is the adjoint traction on the boundary Γ ∪ Γε

corresponding to ũ defined as

t̃i(x) = Cijklũk,l(x)nj(x). (22)

By using the boundary conditions (16)∼(18), we can rewrite

(21) as follows:

0 =

∫
Γ∪Γε

(
t̃iδui − ũiδti

)
dΓ

= −
∫
Γu

ũiδtidΓ +

∫
Γt

t̃iδuidΓ +

∫
Γε

(
t̃iδui + ũiti

)
dΓ

(23)

As usual, by subtracting the real part of (23) from (19), one

has

δJ(x0) = ℜ
[∫

Γu

(
∂f

∂ti
+ ũi

)
δtidΓ

+

∫
Γt

(
∂f

∂u′
i

δu′
i − t̃iδui

)
dΓ

−
∫
Γε

(
t̃iδui + ũiti

)
dΓ

]
. (24)

If one can impose the boundary conditions for the adjoint

quantities (with tilde) so that the first and second terms in

(24) vanish for arbitrary perturbations (with δ), δJ is ex-

pressed only by the quantities defined on Γε whose asymp-

totic behaviours in ε ↓ 0 are tractable.

To define such an adjoint system, we first introduce a

generalised function ψS which satisfies∫
Γt

φ(x)[ψS](x)dΓ(x) =
∫
Γt

∂φ

∂s
(x)ψ(x)dΓ(x) (25)

for an arbitrary function φ and a given function ψ. We then

define the adjoint system by the following integral represen-

tation

ũi(x) =

[
U ′
Γt

∂f

∂u′

]
i

+
[
UΓu t̃

]
i
+

[
TΓu

∂f

∂t

]
i

− [TΓt ũ]i (26)

for x ∈ Ω, with ũ and t̃ solving the following integral equa-

tion (for x ∈ Γ):

cij ũj + [TΓt ũ]i −
[
UΓu t̃

]
i
=

[
U ′
Γt

∂f

∂u′

]
i

+

[
TΓu

∂f

∂t

]
i

, (27)

where the integral operator U ′ is defined as[
U ′
Γ
∂f

∂u′

]
i

(x) =

∫
Γ

∂Uij

∂s
(x− y)

∂f

∂u′
j

(y)dΓ(y). (28)

The boundary value problem corresponding to (27) can for-

mally be given as

Cijklũk,lj(x) + ρω2ũi(x) = 0 x ∈ Ω, (29)

ũi(x) = − ∂f

∂ti
(x) x ∈ Γu, (30)

t̃i(x) =

[
∂f

∂u′
i

S
]
(x) x ∈ Γt. (31)

where in this case S is the tangential differential operator,

i.e., S = ∂/∂s. In this sense, we temporary call Eqs.(29)∼(31)

here a boundary operator problem.
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With the adjoint “variables” ũ and t̃ defined above, (24)

is reduced to

δJ(x0) = ℜ
[
−
∫
Γε

(t̃iδui + ũiti)dΓ

]
. (32)

The remaining task to obtain the topological derivative is to

check the asymptotic behaviour as ε ↓ 0 of the quantities in

the integrand in (32). For this standard procedure, see our

previous publication(11) for example. The final expression

for the topological derivative

DTJ(x
0) = lim

ϵ↓0

δJ(x0)

πε2
, (33)

is obtained as

DTJ(x) = Re

[
λ+ 2µ

4µ (λ+ µ)
(4σij(x)σ̃ij(x)− σii(x)σ̃jj(x))

−ρω2ui(x)ũi(x)
]
,

(34)

where σ̃ is the stress associated with ũ. Equation (34) has

been derived by starting from the expression of the varia-

tion of the objective functional of Eq.(32). Therefore, the

adjoint problem is appropriately defined so that δJ take the

expression of Eq.(32), the topological derivative can always

be calculated using Eq.(34).

Note that, to compute the layer potential (28), we need to

deal with the strong singular integral which cannot be eval-

uated by the technique used for the second layer potential

(7) involving the rigid body motion. Instead, we here adopt

the method proposed by Guiggiani and Casalini(12) which

directly computes the singular integral (28) in the Cauchy

principle sense.

3.3. Level-set method

With the topological derivative derived in the previous

section, the optimisation problem minimising (14) subject

to (1)∼(3) is solved by a level-set-based optimiser(6), which

assumes that the level set function ϕ(x), defined as 0 <

ϕ(x) ≤ 1 for x ∈ Ω, ϕ(x) = 0 for x ∈ Γ, and −1 ≤ ϕ(x) <

0 for x ∈ D \ Ω. The material domain can be extracted

from the distribution of ϕ(x), and its evolution is assumed

to follow

∂ϕ

∂t
= K

(
DT + τ∇2ϕ

)
(35)

Equation (35) is solved by FEM easily for a fixed domain D

utilizing the values of DT iteratively, causing the change in

the distribution of ϕ(x).

4. Numerical examples

In this section, we check the validity of the proposed

topology optimisation. To this end, we solve inverse scatter-

ing problems (Fig. 2) to find preset defects inside the square

region D by minimising the following shape functional

J =

4∑
i=1

∫
Γi

fi(ε)dΓ, (36)

where fi is defined in Fig. 2, and εm is the measured data

for the strain. Thus, we explore the shape of defects by

Defects

Boundary condition Objective function

Fig. 2 Settings for the inverse scattering. The left shows

the boundary condition, and the right shows the defini-

tion of the objective function.

minimising the misfit in the tangent components of strain

for the trial defect (ε) and target one (εm). Note that, in

all the examples in this section, the measurement data is

obtained by BEM. We chose the inverse scattering problem

with which the “optimal” shape is available rather than the

standard topology optimisation problem because it is useful

to assess the performance of the proposed method.

In all the examples to follow, the area size of the de-

sign domain is 1.0 × 1.0 which is divided into 40 × 40 fi-

nite elements on which the level-set function is expanded(6).

The uniformly distributed excitation is given as t̄1 = 0,

t̄2 = F = 0.1 × 1010 and t̄1 = 0, t̄2 = −F on upper (Γ3)

and lower (Γ1) sides of the domain with excitation angular

frequency of ω = 500 [rad/s], respectively. The rest of the

boundary is traction-free. Material parameters are given as

E = 2.16× 1010 [Pa], ν = 0.30 and ρ = 7850 [kg/m3]. Also,

the parameters of Eq.(35) are set as K = 1 and τ = 4 ∼ 5.

Fig. 3.

Fig. 3 Verification of topological derivative.

4.1. Circular cavity

Let us first consider a circular cavity of radius 0.2 centred

at the square region D as the target.

With this setting, we first check the correctness of the
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topological derivative (34). To this end, we compute (34) as

well as its finite-difference approximation with ε = 0.01 on

the lines A, B, C, and D in In Fig. 4∼Fig. 7, the red crosses

and green lines show the topological derivative computed

by the present adjoint formulation and the finite-difference

approximation, respectively. As the figures show, the present

approach can accurately compute the topological derivative

of a shape functional related to tangent derivative of the

displacement.

Finite difference approximation

Explicit topological derivative
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Fig. 4 Topological derivatives along the line A.

Finite difference approximation

Explicit topological derivative
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Fig. 5 Topological derivatives along the line B.

We then show the numerical result for the inverse scat-

tering. From the square region D filled with the elastic ma-

terial, we explored the target shape with the circular cavity

by minimising the objective function (36). The history of

the estimated shape and the convergence curve of the objec-

tive functional are respectively given in Fig. 8 and Fig. 9.

Although the obtained cavity shapes are a little bit wavy,

they may become more smoother for larger value of the reg-

ularisation parameter τ .

As shown in Fig. 8, a cavity created at step 9 gradually

Finite difference approximation

Explicit topological derivative
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e
 v
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e

Fig. 6 Topological derivatives along the line C.

Finite difference approximation

Explicit topological derivative
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e
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a
lu

e

Fig. 7 Topological derivatives along the line D.

becomes large and almost coincides with the target circular

cavity at step 27 after which the shape is not improved any-

more. This can also be confirmed by the convergence curve

in Eq.(9). A small increase in the objective functional value

at step 18 was caused by the appearance of some projections

of the cavity shape, but after they disappeared, the objective

functional value decreased promptly.

4.2. Cavities of various shapes

We have also tested the proposed method with cavities

in various shape such as square, triangle, and oval. Other

than the target shape, all the settings are exactly the same

as the ones in the previous examples. We show the optimised

shapes in Fig. 10

Also, the initial and optimised objective values for all the

cases are listed in Table 1.

From Fig. 10 and Table 1, we conclude that the proposed

method can find a cavity from the measured boundary strain

data regardless of its shape, which which we conclude that

the present topological derivative works well to minimise the

objective function related to the tangent derivative of bound-
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step 11step 9

step 20 step 27

Fig. 8 History of the estimated defect configuration for

the circular case. The red dashed line shows the bound-

ary of the target defect.

ary quantities.

Table 1: Initial and optimised objective values for inverse

problems with various cavities.

Cavity Jinit Jopt

Square 0.148550× 10−3 0.412530× 10−7

Triangle 0.151078× 10−2 0.822205× 10−6

Oval 0.615921× 10−3 0.547446× 10−6

5. Conclusion

In this paper, we proposed a new adjoint field to eval-

uate the topological derivative of the tangent derivative of

displacement. We showed that the newly derived topological

derivative can easily be evaluated by BEM. We also imple-

mented a topology optimiser using the level-set method to

optimise the boundary strain. With several examples re-

lated to inverse scattering problems, we conclude that the

proposed method can find an optimal design minimising the

objective function defined in terms of boundary strain. Fu-

ture investigation may include more rigorous mathematical

justification for the newly defined adjoint variable, and ex-

tend the proposed method to optimise boundary stress.
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