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This study aims to contribute to the expansion of the topology optimization for the

heat conduction problem. The optimization is based on the level-set function to ex-

plicitly express the material distribution. Besides, the lattice Boltzmann method of low

computation cost is used as a heat conduction solver to exploit its simplicity in the im-

plementation as a simulation method with reasonable accuracy. The applicability of the

collaboration between the lattice Boltzmann method and topological derivative in the

topology optimization for the heat conduction problem in this study was verified through

several numerical examples. Its computational efficiency is, moreover, compared with the

existing methods in literature.
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1. Introduction

Controlling the temperature of devices in operation plays

an important role in the improvement of its performance

and the life-time of equipments. There are various ways of

regulating the temperature of devices. Among the solutions,

the heat conduction tools (e.g. heat sink, heat pipes, and so

on) with high conductivity are widely accepted. Therefore,

the development of the heat conductive structure with a high

ability of thermal diffusion and the low material fraction is

attractive. Recently, topology optimization for the thermal

conductor for dissipating heat is becoming an up-and-coming

way for producing conceptual design in various engineering

applications.

In general, the topology optimization of heat conduc-

tion has been extensively developed in a number of pub-

lications, in which various methods were used in the opti-

mization. Regarding the established topology optimization

methods for heat conduction, it can be classified into sev-

eral different approaches, including the density based ap-

proach (1) (2) (3) (4) (5) (6) (7) (8) (9) (10), the evolution-
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ary structural optimization (ESO) (11) (12), and the level-

set based method (13) (14) (15) (16) (17) (18). The readers

may also refer to a review paper (19) for more information

in historical literature of topology optimization for heat con-

duction problem.

In a different aspect, the aforementioned studies mainly

used the conventional methods in the optimization for heat

conduction problems, such as finite difference method (FDM),

finite element method (FEM), finite volume method (FVM),

and boundary element method (BEM). It is, however, quite

challenging in dealing with a large-scale optimization prob-

lem, especially, for the problem consisting of design depen-

dent boundaries on which some explicit boundary conditions

are specified. Moreover, the iterative update in shapes dur-

ing the optimization process requires a lot of computational

cost for re-meshing and re-calculation process. Therefore,

the use of those conventional methods in such a problem

needs high computation resources.

Alternatively, in the last few decades, the lattice Boltz-

mann method (LBM) has been recognized as a substitute for

simulating many problems in physics, such as incompress-
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ible flows (20) (21) (22), compressible flows (23) (24), com-

plex systems (25), and simulation of other partial differen-

tial equations, such as Laplace’s equation (26) (27), Poisson’s

equation (28) (29), the Poisson-Boltzmann equation (30), and

reaction-diffusion equation (31). Moreover, the LBM has suc-

cessfully been used in topology optimizations of various ap-

plication fields, e.g. steady Navier-Stokes problem (32) (33) (34),

unsteady Navier-Stokes problem (35) (36) (37) (38), and heat

transfer problem (39) (40) (41).

As shown in the recent review paper by Dbouk et al.

(2017) and the current reviews on the literature of engineer-

ing design for heat conduction systems, the use of LBM in

topology optimization for heat conduction problems has not

directly been performed. Hence, the potential paradigm of

collaborating the LBM in the topology optimization for the

heat conduction problem is attracting wide attention. More-

over, in the optimization of the heat conduction using LBM,

one of the elements to consider over the conventional meth-

ods is that the simplicity of its algorithm, particularly, the

numerical simplicity of handling the complex boundaries.

Also, the noticeable advantage of using LBM is its paral-

lel computation of complex and large-scale problems. How-

ever, instead of exploiting the advantages of LBM, the afore-

mentioned authors preferably used conventional simulation

methods for optimization.

Furthermore, it is shown in the recent study by Jing et

al. (2015) that the optimization was solved by using the

reaction-diffusion level-set function (42) in which the topo-

logical sensitivity information of the objective function rep-

resents the reaction term in the implicit time evolution level-

set function. In the study, the topological derivative of the

objective function is determined with respect to the topo-

logical perturbation caused by an infinitesimal circular re-

gion removed from the material domain. The calculation of

the topological derivative was done by the computation of

the primal variables that correspond to Laplace’s equation

and the adjoint problem corresponding to Poisson’s equa-

tion using BEM. Therefore, in this study, we aim at test-

ing the applicability and the computational efficiency of the

topology optimization for heat conduction problems wherein

both the primal and adjoint problems are solved by using

the standard regularized Bhatnagar-Gross-Krook LBM vice

versa. The cooperation between LBM and the topological

derivative concept in the optimization for the heat conduc-

tion problem is also tested through various numerical exam-

ples in this study.

Besides, the LBM has already been used in a few stud-

ies for topology optimization for the heat transfer problem.

Even though the topology optimization for the heat trans-

fer problem as compared to the heat conduction problem is

fairly different, it can be modified in straight forward man-

ner to solve the heat conduction problem. To be more spe-

cific, the heat transfer problem becomes a pure heat diffusion

process if there is no impact of the fluid flow on the ther-

mal field. The fluid velocity is, therefore, simplified to zero

in this case. However, concerning the topology optimiza-

tion for heat conduction problem using LBM in literature,

the aforementioned authors used the continuous sensitivity

analysis instead of the topological derivative to compute the

gradient of the objective function wherein the computation

is based on the discrete adjoint lattice Boltzmann method

(Rokicki et al., 2016) or the continuous adjoint lattice Boltz-

mann method (Yaji et al., 2016; Dugast et al., 2018) in the

optimization. Particularly, in the aforementioned studies,

the objective function is defined in terms of the distribution

function. The gradient of the objective function is, therefore,

computed with respect to the variation of objective function

caused by a small perturbation of the distribution function

at a particular point. This conception is somehow an approx-

imation of the topological derivative wherein the variation of

the level-set distribution at a point results in the topological

variation. Thus, in this study, we present a more rigorous

level-set based topology optimization for the heat conduc-

tion problem using LBM and cooperate with the topological

derivative to validate them.

This paper is organized as follows. Section 2 shows the

formulations of the topology optimization based on the level-

set method wherein the primal problem and the adjoint prob-

lem, then the topological derivative is presented. The brief

introduction of the chosen LBMs for solving the primal and

adjoint problems are also contained in this section. In section

3, the validation of the constructed LBM and the validity of

the use of the LBM in the topology optimization for the heat

conduction problem are performed with different numerical

examples. In the last section, the summaries of achievement

in the study are conducted. We also point out some problems

that need to be considered in future studies.

2. Formulation

2.1. Level-set based topology optimization problem

The level-set method is a numerical tool for expressing

the distribution of material domain Ω, the non-material do-

main D\Ω, and the interface between them ∂Ω in the fixed

domain D. The scalar level-set function ϕ (x) here, is defined

as follows: 
0 < ϕ (x) ≤ 1 x ∈ Ω\∂Ω,

ϕ (x) = 0 x ∈ ∂Ω,

− 1 ≤ ϕ (x) < 0 x ∈ D\Ω.

(1)
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In this study, the characteristic function is associated with

the level-set function as follows:

χϕ (x) =

 1 if ϕ(x) ≥ 0,

0 if ϕ(x) < 0.
(2)

Next, we consider the topology optimization for minimiz-

ing an objective function J . It is defined on the boundary

and/or in the material domain as follows:

min
ϕ

J (χϕ) =

∫
Ω

JΩ (u) dΩ+

∫
Γ

JΓ (u, q) dΓ,

subject to

−k∇2u = 0 in Ω\∂Ω,

u = ū on ΓD,

q = −k
∂u

∂n
= q̄ on ΓN ,

q = h(u− u∞) on Γh,

(3)

and

V =

∫
D

χϕdΩ− Vmax ≤ 0, (4)

where JΩ (u) and JΓ (u, q) denote the objective functions de-

fined in the material domain and boundary, respectively. u

denotes temperature, q denotes normal heat flux with ther-

mal conductivity k, n denotes the outward normal vector

with respect to Ω, h denotes the heat transfer coefficient on

the Robin boundary Γh, u∞ denotes ambient temperature,

and Vmax denotes the upper limit of the optimal material

volume. The prescribed temperature imposed on the Dirich-

let boundary ΓD is denoted as ū and the prescribed heat flux

imposed on the Neumann boundary Γq is denoted as q̄.

The problem of searching for a feasible shape that fulfills

the equality and inequality constraints in the above equa-

tions (3) turns out to the problem of finding the optimal ma-

terial distribution by solving the following reaction-diffusion

level-set equation (Yamada et al., 2010). In the following

time evolution equation, the gradient of the objective func-

tion J that represents in the reaction term gives a very im-

portant sense to predict an optimized shape, and the diffu-

sion term plays a role of controlling the smoothness of the

optimized shape. It is shown as follows:

∂ϕ

∂t
= K

(
T + τ∇2ϕ

)
in D,

ϕ|t=0 = ϕ0 in D,

∂ϕ

∂n
= 0 on ∂D\Γw,

ϕ = 1 on Γw,

(5)

where K > 0 is a proportional constant, τ denotes a regu-

larization parameter, ϕ0 denotes initial level-set function at

fictitious time t = 0, Γw denotes the non-design boundary

and T denotes the topological derivative that represents the

sensitivity information of a given objective function. It is

noted that the complete derivation of the topological deriva-

tive for the heat conduction was presented in the previous

study by Jing et al. (2015). In that study, the authors used

the adjoint method to express the topological derivative in

which the heat transfer boundary condition is applied on the

new boundary corresponding to a topological change.

The corresponding boundary value problem for the ad-

joint field µ is given as follows:

−k∇2µ =
∂JΩ

∂u
in Ω,

µ = −∂JΓ

∂q
on ΓD,

η =
∂JΓ

∂u
on ΓN ,

η = h

(
µ+

∂JΓ

∂q
+

1

h

∂JΓ

∂u

)
on Γh,

(6)

where

η = −k
∂µ

∂n
. (7)

It is noted that in the case of the objective function is de-

fined only on the boundary, the gradient with respect to the

temperature of the objective function defined in the material

domain ( ∂JΩ
∂u

) equals zero. Therefore, the adjoint problem is

simplified to the Laplace’s equation instead of the Poisson’s

equation as in Eq. (6).

As a result, the topological derivative can be computed

as follows:

T = µ0h
(
u0 − u∞

)
+

(
u0 − û

)2
, (8)

here u0 and µ0 are the temperature and temperature ad-

joint at the center of Ωϵ − an infinitesimal material domain,

of the expanded u and µ, respectively, and û denotes the

target temperature. The objective function JΓ = |u− û|2 is

implicitly used in the analysis. For more detail on the topo-

logical derivative procedure, the readers may refer to Jing et

al. (2015).

2.2. Lattice Boltzmann method

2.2.1. Method of computation

In this study, the standard two-dimensional nine-velocity

(D2V9) lattice Boltzmann method is used to obtain the pri-

mal solution u in the Laplace’s equation (3) and the adjoint

solution µ in the Poisson’s equation (6). It is noted that the

two-dimensional five-velocity (D2V5) lattice model is also a

candidate to solve these Laplace’s and Poisson’s equations.

However, for the wide-range applicabilities to the complex

geometry design problems wherein the Robin boundary con-

dition is employed, the D2V9 is selected in purpose in this

study (27).
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The characteristic particle velocity ci and the weighting

function wi in the D2V9 lattice Boltzmann model read as

follows:[
c1, c2, c3, c4, c5, c6, c7, c8, c9

]
=

[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
.

(9)

w1 = 4/9, w2˜5 = 1/9, w6˜9 = 1/36. (10)

The time evolution equation of the temperature distribu-

tion functions, fi (x, t) that corresponds to the primal prob-

lem (3) and the adjoint temperature distribution functions

gi (x, t) that corresponds to the adjoint problem (6) read the

following equations:

fi (x+ ci∆x, t+∆t)− fi (x, t) = − 1

τf
[fi (x, t)− feq

i (x, t)] .

(11)

gi (x+ ci∆x, t+∆t)− gi (x, t) =− 1

τg
[gi (x, t)− geqi (x, t)]

+ Ω′
i (x, t) .

(12)

Here ∆x and ∆t denote the lattice spacing and the time

step, respectively. τf and τg denote single relaxation times.

Ω′
i (x, t) = ∆xwiRDσ∗ denotes the force term, where Dσ∗ is

the thermal diffusivity and R is exactly the same as the right

hand-side term in the Poisson’s equation (6). feq
i (x, t) and

geqi (x, t) are the chosen equilibrium distribution functions

designed as follows (28) (43):

feq
i = wiu for i = 1, 2, 3, ...9. (13)

geqi = wiµ for i = 1, 2, 3, ...9. (14)

The macroscopic variables u and µ are computed as the

thermal concentrations in terms of the distribution function

fi (x, t) and gi (x, t), respectively, as follows:

u =

9∑
i=1

fi =

9∑
i=1

feq
i (15)

µ =

9∑
i=1

gi =

9∑
i=1

geqi (16)

In this study, the thermal diffusivities in the time evolu-

tion equations (11) and (12) are computed by the following

formulas:

Dσ =
1

3

(
τf − 1

2

)
∆x, (17)

Dσ∗ =
1

3

(
τg − 1

2

)
∆x. (18)

Moreover, as it is stated in the prevous studies (e.g Inamuro

et al. (44), the thermal conductivities in the time evolution

equations (11) and (12) are given as follows:

k =
1

3
τf∆x, (19)

k∗ =
1

3
τg∆x. (20)

2.2.2. Boundary condition

In this section, the three typical types of heat conduction

boundary conditions defined on the surfaces are presented.

All the boundary conditions will be described in terms of

the particle distribution function fi for the primal problem.

The similar procedures can be applied for those boundary

conditions of the adjoint problem wherein the particle dis-

tribution function gi must be treated in the same manner as

fi. In the lattice Boltzmann method, due to the character-

istics of the propagation rules for those particles located on

the boundary nodes, the temperature distribution functions

at the boundary nodes must be specified and satisfied that

(ci · n) > 0 are unknown. As shown in Fig. 1, we assume

that the boundary node placed on the vertical line Γwall (at

x = 0) and n is the unit normal vector (43). The unknown

temperature distribution functions funknown
i at the boundary

node are given as follows:

funknown
i = wiū

′
for (ci · n) > 0, (21)

where ū
′
is the thermal concentration of the unknown tem-

perature distribution functions.

Fig. 1 Demonstration of the boundary conditions. The

prescribed temperature ū or the prescribed normal heat

flux q̄ will be specified at the boundary node in case of

the Dirichlet or Neumann boundary conditions, respec-

tively. The heat transfer coefficient h and the ambient

temperature u∞ are given in case of Robin boundary

condition.

A. Dirichlet boundary condition: The Dirichlet bound-

ary condition is imposed on the surface when the prescribed

temperature ū is specified at the boundary node. The un-

known temperature distribution functions funknown
i can be

derived by the equations as follows:

ū =
∑

i(ci·n>0)
fi +

∑
i(ci·n≤0)

fi

=

(∑
i(ci·n>0)

wi

)
ū

′
+

∑
i(ci·n≤0)

fi.
(22)
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ū
′
=

ū−
∑

i(ci·n≤0) fi∑
i(ci·n>0) wi

. (23)

funknown
i = wi

ū−
∑

i(ci·n≤0) fi∑
i(ci·n>0) wi

. (24)

B. Neumann boundary condition: Similarly, the Neu-

mann boundary condition is imposed on the surface when the

normal heat flux q̄ is prescribed at the boundary node. The

normal heat flux can be obtained from the equilibrium dis-

tribution moments and described in Yoshino and Inamuro et

al. (2003) such that q̄ =
9∑

i=1

fici · n. The following equations

are derived for the expression of the unknown temperature

distribution functions:

q̄ =
∑

i(ci·n>0)
fici · n+

∑
i(ci·n≤0)

fici · n

=

(∑
i(ci·n>0)

wici · n
)
ū

′
+

∑
i(ci·n≤0)

fici · n.
(25)

ū
′
=

q̄ −
∑

i(ci·n≤0) fici · n∑
i(ci·n>0) wici · n

. (26)

funknown
i = wi

q̄ −
∑

i(ci·n≤0) fici · n∑
i(ci·n>0) wici · n

. (27)

C. Robin boundary condition: When the Robin bound-

ary condition is imposed on the surface, the unknown tem-

perature distributions at the boundary node will be expressed

in terms of the known temperature distribution functions.

This part is motivated by the study by Hiorth et al. (2009).

The Robin boundary condition is formed as follows:

−kn · ∇u = h (u− u∞) . (28)

Here u∞ will hence be simplified by assuming to be zero. By

using the Eq. (21), the Eq. (36b), and the non-equilibrium

part of the distribution function in the Eq. (35) up to O
(
ε2
)
,

the following equation reads,

fi = (1 + 3h∆x) feq
i for (ci · n) > 0. (29)

Using the above equation (29) and the following non-

equilibrium bounce-back rule:
f4 − feq

4 = − (f2 − feq
2 ) ,

f8 − feq
8 = − (f6 − feq

6 ) ,

f7 − feq
7 = − (f9 − feq

9 ) .

(30)

Finally, the unknown temperature distribution functions are

determined in terms of the known temperature distribution

functions as follows:

f4 =

(
2

1 + 3h∆x
− 1

)
f2,

f8 =

(
2

1 + 3h∆x
− 1

)
f6,

f7 =

(
2

1 + 3h∆x
− 1

)
f9,

(31)

where the underlined terms represent the unknown temper-

ature distribution functions.

3. Validation and numerical example

In this section, several numerical examples are carried

out to validate our proposed method. First, in the evalu-

ation of the LBM solver, a direct comparison is performed

with a well-established FEM solver. i.e, FreeFEM++ (45),

though a numerical example to analyze the accuracy of the

LBM used in this study. Next, we conduct several numer-

ical examples to evaluate the use of LBM in the topology

optimization for the heat conduction problem and its com-

putational efficiency. It is noted that the numerical examples

used in this study are motivated by those used in the study

by Jing et al. (2015). In the aforementioned study, the au-

thors used BEM for solving the primal and adjoint problems

of the optimization while in this study, the primal and ad-

joint problems are solved by the LBM. It is, however, a direct

comparison could not be made because of some different con-

ditions used in the two different simulation methods for the

optimization problem.

The termination criterion for evaluating the objective

function is given as follows:

|Jς − Jς−1|
Jς

< εopt, (32)

here ς denotes the optimization step, εopt is set as 10−6.

The computation is terminated when the criterion and all

the constraints are met.

3.1. Validation

The first numerical example is to solve Laplace’s equa-

tion. The numerical example is simulated in a square do-

main (100× 100 lattice) used in the LBM approach, which

is compatible with the structured mesh (100× 100 triangu-

lates unit square) used in the FreeFEM++ tool. The same

initial and boundary conditions are applied to both the simu-

lation methods. As described in Fig. 2, the square domain Ω

is initially fulfilled with the material, the prescribed bound-

ary condition ū = 100 on the vertical left-most (Γu) and the

prescribed ū = 0 is applied to the other edges on the right,

top, and bottom (Γq) of the fixed design domain Ω. While

the Galerkin finite element formulation P1 (45) is used in the

FreeFEM++ tool, some particular conditions are used in the

LBM such as the dimensionless relaxation time τf = 1, the

initial condition of the macroscopic variable ρ = 0, and the

accuracy is set up to 10−6. For more information on how to

implement the FreeFEM++ tool, please refer to the publica-

tion by Hecht et al. (2012). We solve the following boundary

value problem (BVP) of Laplace’s equation:
−∇2u = 0 in Ω,

ū = 100 on Γu,

ū = 0 on Γq.

(33)
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Fig. 2 Design setting of the BVP given by Eq. (33).

With these above settings, we obtained the identical re-

sults of Eq. (33) by the two different approaches. As shown

in Fig. 3, the similar results of the Laplace problem are

achieved by the FreeFEM++ approach and the LBM ap-

proach. Furthermore, a direct comparison of the perfor-

mances between the two methods is conducted to robust the

validation of the LBM used in this study. In the compar-

ison, the results of the Laplace problem computed by the

FEM solver and the LBM solver are recorded on the center-

line I and the centerline II of a square domain (shown in Fig.

2. As shown in Fig. 4, we observed a good agreement in the

results obtained by the two different solvers. The finite dif-

ferences between the results obtained by the two methods are

conducted to evaluate the accuracy of the LBM. It is noticed

that the relatively small differences of the results achieved by

the FEM solver and the LBM solver are computed on both

the vertical and horizontal center lines I and II. The finite

difference at each lattice point on the center lines I and II

are computed by
(

|uL−uF |
100

)
, where uL denotes the solution

achieved by the LBM and uF denotes the solution achieved

by the FEM at the selected lattice point. To be more spe-

cific, a small relative error that is less than 0.0025 on the

centerline I is observed while that is less than 0.003 on the

centerline II is recorded. This achievement agrees that the

LBM can handle the diffusion equation with an acceptable

accuracy as a cheap simulation method.

3.2. Numerical example 1

In this numerical example, we aim to minimize a given

objective function that is defined on the boundaries of a fixed

design domain. The objective function is formulated as fol-

lows:

J =

∫
Γh∪Γϵ

(u− û)2 dΓ, (34)

where Γϵ denotes the boundary of the infinitesimal circular

removed from the material domain and û denotes the target

temperature, it is set as û = 10 in this study.

The fixed design domain is considered as a 50× 50 lattice

(a) FEM approach

(b) LBM approach

Fig. 3 The results for temperature u calculated by the

FEM and LBM.

(a) Line I

(b) Line II

Fig. 4 The temperatures u calculated at the points along

the center lines I and II of the square domain.
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square which is initially filled with the material as shown

in Fig. 5. The boundary conditions are described in this

figure such that the prescribed temperature ū = 100 is im-

posed on the Dirichlet boundary ΓD located on each edge

of a square domain while the heat transfer coefficient h = 1

and the ambient temperature u∞ = 0 are applied to all the

Robin boundaries Γh. The thermal conductivity is computed

by the Eq. (19), the relaxation times τf = 1 and τg = 1 are

used in all numerical examples. The permissible volume con-

straint of the material Vmax is set up to 80% of the fixed

design domain. The proportional constant K = 1 and the

regularization τ = 5× 10−3 are set for the Eq. (5).

As a result, Fig. 6 shows the optimization histories ob-

tained by the LBM and the BEM at selected optimization

time steps. It should be noted that the results obtained by

the BEM were produced by Jing et al. (2015) with the same

initial and boundary settings excepted the setting parame-

ters (the proportional constant K and the regularization τ)

for the time evolution equation Eq. (5) due to the differences

of the optimization schemes. For more detail on the settings

of the simulation method and the optimization procedure,

the readers may refer to the aforementioned publication. The

similarities of the optimized configurations obtained by the

two methods are observed. To be more specific, a total of

4 holes are appeared and developed to be larger during the

optimization. These holes are treated as heat absorbers in

which the Robin boundary condition is also applied to their

boundary shapes. It is shown in Fig. 8 that the temperature

distribution inside these holes is lower than that of the out-

side in all optimization time steps. They totally complied

with the previous study (17). Thus, this confirms that the

proposed method can deal with the topology optimization

for heat conduction problem and the obtained results can be

considered as the solutions.

Fig. 5 Design setting of the example 1.

In this numerical example, we also investigated the effect

of the regularization parameter to the complexity of the opti-

mal configuration. There are various values of the regulariza-

tion parameters such as τ = 1× 10−3, 5× 10−3, and 1× 10−2

used for the examination. It is shown in Fig. 7, the big-

ger regularization parameters τ used will create the simpler

boundary shapes of the optimal configurations. This is com-

plied with what was found in litteratures (42) (17).

Figure 9 shows the convergence histories of objective

function and the volume constraint. Its smooth conver-

gences confirm the performance of the optimization prob-

lem and validate the obtained optimal results. Moreover,

to investigate the computational efficiency of the proposed

method (using LBM), we ran this numerical example with

the same numerical example proposed by Jing et al., 2015

(using BEM) on the same computer. It is noted that the de-

veloped codes of the two programs were written in Fortran

and run on a PC with Intel Core I7-6700 3.40GHz CPU.

As a result, the proposed method took 59 seconds to reach

the steady-state while the other took 408 seconds. We ob-

served a significant difference in the computational time by

the two studies. The computational time is efficiently saved

due to the parallel computation and without using any ma-

trix solver in the LBM program. Therefore, we confirm, as

expected, that the effectiveness of using the LBM in topology

optimization also for the heat conduction problem.

3.3. Numerical example 2

In the next numerical example, we test the availability

of the optimization for a non-square design domain that us-

ing the proposed method. In this example, the fixed de-

sign domain 100× 75 lattice is initially fullfilled by the ma-

terial with the thermal conductivity calculated by the Eq.

(19). The objective function is still defined by the Eq. (34).

Literally, the boundary conditions are the same in the pre-

vous numerical example such that the prescribed tempera-

ture ū = 100 is imposed on the Dirichlet boundary ΓD, the

heat transfer coefficient h = 1, and the ambient temperature

u∞ = 0 are used where the Ronbin boundary condition Γh

applies. The allowable volume Vmax of the material is 80%

of the initial volume. The regularization parameter is chosen

as τ = 1× 10−2, the relaxation times τf = 1 and τg = 1 are

selected, and the termination criterion is satisfied the Eq.

(32).

Figure 12 shows the optimal configuration and its tem-

perature distribution. As what is observed, there are 4 holes

were created during the optimization. Their appearences

encourage the reduction of the objective function and con-

straints. Therefore, the proposed method works in the dif-

ferent initial designs, which confirms the potential paradism
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(a) Step = 1 (b) Step = 25

(c) Step = 100 (d) Final step

Case A: Lattice Boltzmann method

(produced by this study)

(e) Step = 1 (f) Step = 5

(g) Step = 20 (h) Final step

Case B: Boundary element method

(taken from Jing et al., 2015)

Fig. 6 The optimization histories obtained by different

approaches.

(a) τ = 1× 10−3 (b) τ = 5× 10−3 (c) τ = 1× 10−2

Fig. 7 The different optimized shapes obtained by

different regularization parameters τ.

(a) Step = 1 (b) Step = 25

(c) Step = 100 (d) Final step

Fig. 8 The temperature distribution at various steps.

Fig. 9 Convergence histories of objective function and

the volume constraint of the example 1.

of the proposed method to deal with various design prob-

lems in engineering application. In the future development

of the proposed method, the examination for the more com-

plex initial designs will be considered. For those complex

shapes, the LBM needs to be developed to deal with the

problems of complex geometry.

Figure 11 shows the distribution of normalized topolog-

ical derivative values. The less regularity of the boundaries

between the high-preferable cells (shown in red) and the low-

preferable cells (shown in blue) is observed, as compared to

the smooth boudaries in the optimal configuration. This

however, is explained by the effect of the diffusion term in

the time evolution equation (5) for updating the optimal

configuration (42). This penalty behaves via the selection

of the regularization parameters in the diffusion term. The

more complex shapes will be obtained in an optimization by
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Fig. 10 Design setting of the example 2.

Fig. 11 Distribution of normalized topological derivative

values.

(a) Optimized configuration

(b) Temperature distribution

Fig. 12 The optimized configuration and its temperature

distribution.

Fig. 13 Convergence histories of objective function and

the volume constraint of the example 2.

chosing a relative small value of τ . However, the optimized

shapes may be very difficult for manufacturing if it is too

complicated. Thus, the reliable results need to be consid-

ered by designing an appropriate regularization τ .

Figure 13 shows the convergence histories of objective

function and volume constraint in all time steps. The sig-

nificant reduction of the objective function is noticed when

the holes are created inside the fixed design domain, which

agrees with the reduction of the volume constraint. The fea-

sible configuration appreared around step 150, however, the

total 300 steps are used in this numerical example for a suffi-

cient convergence. The smoothness of the curves certify the

obtained results are accepted to be the solutions.

4. Conclusion

In this study, we have successfully proposed a level-set

based topology optimization for the heat conduction prob-

lem incorporating with the lattice Boltzmann method. The

novelty of this study is the primary utilization of the LBM

and the topological derivative in a level-set based topology

optimization for the heat conduction. The successful coop-

eration between the LBM and the topological derivative in

this study leads this pattern to a potential paradigm for the

development of the topology optimization for the fluid flow

problem, the thermal-fluid problem, or many other problems

in physics. The effectiveness of this method has been per-

formed through numerical examples wherein the optimal so-

lutions obtained by the proposed method properly agreed

with the solutions found in the literature. In particular,

the performance of the constructed LBM used in this study

has been compared with a well-established FEM tool (i.e.

the FreeFEM++). The relatively small finite differences be-

tween the two methods were observed over a general numer-

ical example. The applicability of the LBM and its compu-

tational efficiency in the topology optimization for the heat
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conduction problem have also been validated by comparing

with the results by other conventional methods. The notice-

able cutback of the computational time has been observed

in the use of LBM for the optimization as compared to a

conventional method in the study. The similar optimal re-

sults obtained by the two different methods were noticed over

various numerical optimization examples. Moreover, due to

the limitation in the constructed LBM used in this study,

the optimization with more complex boundaries of the ini-

tial design could not be performed for testing its stability

and accuracy. Specifically, the suitable discretization lat-

tice scheme for the LBM in various initial design problems

wherein the Robin boundary condition is employed needs fur-

ther investigations. It is also noted that the level-set based

topology optimization in which the topological derivative is

used requires a highly accurate manner for the computation.

Thus, the enhancement for accuracy and efficiency of a high-

order LBM is essentially demanded. In such a method, the

high-order discretization system can be used to improve the

current study.

5. Appendix

In this section, the recoveries of the Laplace’s equation

and Poisson’s equation from a chosen LBM pattern are sum-

marized as follows. The Chapman-Enskog analysis is used

for the derivation. This gives,

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + ...,

∂

∂t
= ε2

∂

∂t

(2)

+ ...,

∇ = ε∇(1),

R = ε2R(2),

(35)

where ε = O [∆x]. The Taylor analysis is applied to the Eq.

(11) in case of recovering Laplace’s equation, and applied to

the Eq. (12) in case of recovering Poisson’s equation.

The results are divided into different orders after ex-

panded by using Chapman-Enskog analysis. As considering

up to O[∆x]2, it yields,

O (εo) : f
(0)
i = feq

i , (36a)

O
(
ε1
)
:
(
ci · ∇(1)

)
f
(0)
i = − 1

τf∆x
f
(1)
i , (36b)

O
(
ε2
)
:

(
Sh

∂

∂t

(2)
)
f
(0)
i +

(
ci · ∇(1)

)
f
(1)
i

+
1

2
∆x

(
ci · ∇(1)

)2

f
(0)
i = − 1

τf∆x
f
(2)
i , (36c)

where ∆t = Sh∆x. Sh denotes the Strouhal number (43).

The Eq. (36c) can be written as follows by using the

relation in the Eq. (36b),

O
(
ε2
)
: Sh

∂

∂t

(2)

f
(0)
i −∆x

(
τf − 1

2

)(
ci · ∇(1)

)2

f
(0)
i

= − 1

τf∆x
f
(2)
i .

(37)

Finally, the Laplace’s equation can be recovered by sum-

ming up the Eq. (37) and use the relations in Eq. (35),

Sh
∂

∂t
u−Dσ∇2u = 0, (38)

where
9∑

i=1

f
(k)
i = 0 (k ≥ 1) is implicitly used.

Similarly, the Poisson’s equation can be recovered by us-

ing the same above procedures. The result of the time evo-

lution equation in second order is written as follows:

O
(
ε2
)
: Sh

∂

∂t

(2)

g
(0)
i −∆x

(
τg − 1

2

)(
ci · ∇(1)

)2

g
(0)
i

= − 1

τg∆x
g
(2)
i + wiR

(2)Dσ∗ .

(39)

Since
9∑

i=1

g
(k)
i = 0 (k ≥ 1), the Poisson’s equation is re-

covered by summing the Eq. (39) as follows:

Sh
∂

∂t
µ−Dσ∗∇2µ = RDσ∗ . (40)

It is noted that in the steady problem, the time deriva-

tives in the Eq. (38) and the Eq. (40) should be ignored.
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