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This paper presents a topology optimization method for unsteady incompressible viscous

fluid flow employing the lattice kinetic scheme as the solver of Navier-Stokes equations.

The lattice kinetic scheme merges the lattice Boltzmann method with the kinetic schemes,

hence it uses less computer memory and has a simpler boundary condition compared to the

lattice Boltzmann method. This study considers an optimization problem of maximizing

the dissipation kinetic energy of unsteady flow and aims at providing a solution to the

design of hydraulic anti-vibration devices. The optimization is performed based on the

gradient of the objective functional with respect to design variables. The design sensitivity

is derived via the adjoint method. Numerical experiments are presented to confirm the

validity of design sensitivity and the utility of the proposed method.
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1. Introduction

The topology optimization methodology is a significant

design tool for a variety of structural mechanics and is able

to obtain optimal solutions through simulation techniques.

In recent years, topology optimization has gained increasing

attention and has been applied for solving various physi-

cal problems including fluid flow problems. Since Borrvall

and Petersson first applied topology optimization to Stokes

flow,(1) additional researches have extended its applications

to different fluid flow such as laminar Navier-Stokes fluid

flow(2) and various fluid devices like microfluidic mixers.(3, 4)

In the majority of previous studies, the Navier-Stokes equa-

tions are numerically solved for fluid simulation. In recent

decades, the lattice Boltzmann method has become a pop-

ular solver of Navier-Stokes equations since it has a simple

algorithm and does not need iterative computation to obtain

macroscopic variables of fluid, thus it is easy to implement

parallel computation and can save computational cost. In

the lattice Boltzmann method, the lattice Boltzmann equa-

tion is a discretized Boltzmann equation that describes the
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time evolution of particle velocity distribution function. The

particle velocity distribution function represents the proba-

ble number of particles at a point in the fluid field. In the

kinetic theory, the particles are imaged to be in random mo-

tion, however, the lattice Boltzmann method approximately

restricts the particles’ velocity in finite directions and the

macroscopic fluid variables, such as density, velocity, and

pressure are able to be obtained from the discretized distri-

bution functions.

After the pioneering study of applying the lattice Boltz-

mann method to topology optimization of fluid,(5) it has

been employed in various studies of topology optimization for

fluid flow problems.(4, 6, 7) However, the storage requirement

remains a problem when the design domain includes a large

number of grids since it is necessary to save the discretized

distribution functions of every grid. In 2002, Inamuro pro-

posed the lattice kinetic scheme,(8) which simplified the lat-

tice Boltzmann equation by using a unit relaxation time and

employs the Chapman-Enskog equilibrium distribution func-

tion,(9, 10, 11) Due to this change, the lattice kinetic scheme

does not need to compute and save the discretized distribu-

tion functions of every grid; hence, it is able to save memory
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usage than the lattice Boltzmann method. In addition, the

no-slip boundary can be directly imposed in the lattice ki-

netic scheme while the bounce-back condition must be con-

sidered in the lattice Boltzmann method. In this study, we

employ the lattice kinetic scheme to simulate the unsteady

fluid flow and use a new lattice Boltzmann equation to re-

duce the compressible effects following the research by He et

al.(12)

Topology optimization for steady flow problems were pri-

marily considered in previous researches. However, unsteady

flows dominate many systems in reality, thus it is of great

importance to develop a topology optimization method for

unsteady flows. There are a number of researches studying

topology optimization for unsteady flow problems employing

the finite element method (13, 14) and the lattice Boltzmann

method.(15, 16, 17) In this study, we consider a topology opti-

mization method for unsteady flow using the lattice kinetic

scheme. Conventionally, the problem of minimizing dissi-

pation kinetic energy is commonly considered. This study

focuses on solving the problem of maximizing dissipation ki-

netic scheme and aims at proposing a solution to the design

of hydraulic anti-vibration systems.(18, 19, 17)

The adjoint method is an important tool in topology op-

timization since it is efficient to obtain the gradient of a cost

function. In this study, according to the method proposed by

Yaji et al.,(20) the adjoint function of lattice kinetic scheme

is derived to compute the design sensitivity. The level set

method is adopted in this study using the level set function

to express the material distribution, which is updated by the

time evolution level set function during the optimization.

In the rest of this article, we introduce the formulation

of the optimization problem in Section 2, and in Section 4,

numerical examples are presented for the validation of the

proposed topology optimization method.

2. Problem formulation

2.1. Cost function

We consider the maximization of dissipation kinetic en-

ergy of an unsteady flow. The design domain is as shown in

Fig. 1, where D represents the design domain, Ω, ∂Ω and Ω̄

represent the fluid domain, boundary of fluid domain and the

solid domain, respectively; Γv,Γp and Γw denote the velocity

prescribed boundary, the pressure prescribed boundary and

the wall of the design domain, respectively.

The objective functional is defined by adding a minus sign

to the dissipation kinetic energy as follows:

inf
ϕ

J = −
∫
I

∫
D

ZdΩdt, (1)

s.t. V = VΩ − Vmax ≤ 0, (2)

Fig. 1 Design domain.

where Z calculates the dissipation kinetic energy by

Z =
1

2Re
(∇u+∇uT) : (∇u+∇uT), (3)

and J is the objective functional integrating Z over Ω and

time I, t ∈ I. V ≤ 0 represents the volume constraint, VΩ

denotes the volume of fluid field and Vmax denotes the al-

lowed maximum volume of fluid field. Re is the Reynolds

number.

2.2. Lattice kinetic scheme

In this study, we use dimensionless variables defined by a

characteristic length L̂, a characteristic particle speed ĉ, a

characteristic time scale t̂0 = L̂/Û , where Û is a character-

istic flow speed, and a reference density ρ̂0.

Since lattice kinetic scheme is an extended lattice Boltz-

mann method, we introduce lattice Boltzmann method firstly

in this section. The Boltzmann equation with the Bhatnagar-

Gross-Krook collision operator is written as

∂f

∂t
+ c · ∇f = − 1

τ
(f − feq), (4)

where f and feq are the particle velocity distribution func-

tion and the local equilibrium distribution function, respec-

tively. The relaxation time τ is a parameter of O(1). The

lattice Boltzmann equation is a discretized Boltzmann equa-

tion reads

fi(x, t+∆t) =fi(x− ci∆x, t)− 1

τ
[fi(x− ci∆x, t)

−fi
eq(x− ci∆x, t)] , (5)

where fi(x, t) is the discretized distribution function f rep-

resenting the probable number of particles that moves in the

direction i at the point x and time t. feq
i is the discretized

equilibrium function feq. ∆x and ∆t represent the lattice

length and step size, respectively. ∆t is chosen so that the

particles travel one lattice spacing during the step size.

In the lattice Boltzmann method, the macroscopic fluid
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parameters are computed by

ρ(x, t) =

N∑
i=1

fi(x, t),

ρu(x, t) =

N∑
i=1

cifi(x, t),

p(x, t) =
1

3
ρ(x, t),

where N is the number of discretized directions, ρ and p are

the density and pressure of the fluid.

Inamuro (8) proposed the lattice kinetic scheme by setting

τ = 1, so that Eq. (5) becomes

fi(x, t+∆t) = fi
eq(x− ci∆x, t), (6)

and the equilibrium equation feq
i is defined as

feq
i =wiρ

{
1 + 3ciγuγ +

9

2
ciγciβuγuβ − 3

2
uγuγ

+A∆x

(
∂uβ

∂xγ
+

∂uγ

∂xβ

)
ciγciβ

}
, (7)

where β and γ = x or y represents a component of Cartesian

coordinates, where the summation convention is applied for

repeated indices, and wi is the weight coefficient. A is a con-

stant parameter of O(1), determining the kinetic coefficient

ν of the fluid by

ν =

(
1

6
− 2

9
A

)
∆x.

Then, the macroscopic variables of the fluid can be computed

as follows:

ρ(x, t) =

N∑
i=1

feq
i (x− ci∆x, t−∆t),

ρu(x, t) =

N∑
i=1

cif
eq
i (x− ci∆x, t−∆t),

p =
1

3

N∑
i=1

feq
i (x− ci∆x, t−∆t).

In the lattice kinetic scheme, u, ρ and p can be computed

from feq
i without using fi. Therefore, fi, i = 1, ..., N does

not need to be computed or saved.

Various lattice models of the lattice Boltzmann method

have been proposed so far in the previous studies, among

which the D2V9 model has been commonly used for two

dimensional problems. In this research, we employ the D2V9

model, being shown in Fig. 2, which restricts the particles’

velocity in 9 directions in the plane space, i.e., N = 9. In the

D2V9 model, the velocity vectors ci=1,...,9 of the particles are

defined as

[c1, c2, c3, c4, c5, c6, c7, c8, c9]

=

[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
,

Fig. 2 D2V9 model

and the weight coefficients wi are given as

wi =


4
9

i = 1
1
9

i = 2, 3, 4, 5
1
36

i = 6, 7, 8, 9.

In the research by He et al. (12), a new lattice Boltzmann

method is proposed for the reduction of the compressible

influence in solving the Navier-Stokes equations. In this new

lattice Boltzmann method, the fluid density is treated as a

constant. Following this research, we have feq
i in the form

as

feq
i =wi

{
3p+ ρ0

[
3ciγuγ +

9

2
ciγciβuγuβ − 3

2
uγuγ (8)

+A∆x

(
∂uβ

∂xγ
+

∂uγ

∂xβ

)
ciγciβ

]}
. (9)

Consequently, u and p are defined as

p(x, t) =
1

3

N∑
i=1

feq
i (x− ci∆x, t−∆t),

ρ0u(x, t) =

N∑
i=1

cif
eq
i (x− ci∆x, t−∆t).

In this study, ρ0 is given as ρ0 = 1. The first derivative
∂uβ

∂xγ

in Eq. (9) is calculated via the finite-difference approxima-

tion (8), expressed as

∂uβ

∂xγ
≈ 1

6∆x

9∑
i=1

ciγuβ(x+ ci∆x).

2.3. Boundary conditions

The boundary conditions are summarized as follows:

u = (U, 0) on Γv,

p = P on Γp,

u = 0 on Γw.

In the lattice kinetic scheme, the macroscopic variables are

directly specified at the boundaries, while the bounce-back

boundary conditions in terms of the velocity distribution

function should be applied in lattice Boltzmann method.

Therefore, the additional advantage of lattice kinetic scheme

is that we can use the same boundary conditions as those in

the usual CFD simulations.
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Fig. 3 Level set method

2.4. Level set method

In the level set method, a scalar function ϕ, called level

set function, is employed to distinguish the fluid and solid

domain, which is defined as
0 < ϕ(x) ≤ 1 if x ∈ Ω

ϕ(x) = 0 if x ∈ ∂Ω

−1 ≤ ϕ(x) < 0 if x ∈ Ω̄.

(10)

The characteristic function (21) χϕ is defined as

χϕ(x) =

{
1 if ϕ(x) ≥ 0 ⇔ x ∈ Ω

0 if ϕ(x) < 0. ⇔ x ∈ Ω̄
(11)

The volume of the fluid field is then calculated by

VΩ =

∫
D

χϕdΩ.

According to the research by Yamada et al. (21), the follow-

ing reaction-diffusion equation is used to update ϕ during

the optimization

∂ϕ

∂ζ
= −K(J ′ − τR∇2ϕ), (12)

where ζ is fictitious time, K > 0 is a constant, J ′ denotes the

design sensitivity. τR∇2ϕ is the regularization term control-

ling the complexity of the fluid domain shape. The boundary

of the fluid domain can be extracted from the zero iso-surface

of ϕ. The boundary shape is changed in accordance with the

update of the distribution of the value of ϕ during the opti-

mization.

2.5. Sensitivity analysis

Yaji et al. (20) proposed a level set-based topology opti-

mization method, in which the LSF ϕ is introduced to the

lattice Boltzmann equation by replacing u with ϕu as below:

u := ϕu,

and the design sensitivity is derived via the adjoint method.

Following the research by Yaji et al. (21), we define the

augmented objective functional J̄ as follows:

J̄ = J +G+ λV,

G =

∫
D

∫
I

∫
R
f̃

[
∂f

∂t
− c · ∇f +

1

τ
(f − feq)

]
dcdDdt = 0,

(13)

where G is the constraint condition, R is the velocity space,

f̃(x, c, t) and λ are the Lagrangian multipliers, λ ≥ 0. Fol-

lowing Yaji et al. (20), we derive f̃ from the continuous

Boltzmann equation and then discretize it using lattice ki-

netic scheme.

From the stationary state of J̄ , we have

δfJ + δfG = 0,

where δfJ and δfG denote the variations of J and G with

respect to f . In this research, f̃ is derived as

f̃i(x− ci∆x, t−∆t) = f̃eq
i (x, t)− Z′,

f̃eq
i =

9∑
j=1

f̃jf
a
j {1 + 3(ci − u) · (cj − u)} . (14)

f̃ has the similar form with lattice Boltzmann equation and

it is a backward problem, f̃ is called the adjoint function of

f . In Eq. (14), fa
i , (i = 1, ..., 9), Z′ are defined as

fa
i = wi(3p+ ρ0(3ciγuγ +

9

2
ciγciβuγuβ − 3

2
uγuγ).

Z′ = δfiJ.

Consequently, the design sensitivity is derived as

δϕJ̄ =

∫
D

{∫
I

[
9∑

i=1

f̃i3wi(3p+ ρ0(3ciγuγ +
9

2
ciγciβuγuβ

−3

2
uγuγ)(uγuγ − ciγuγ)

]
dt+ λ

}
δϕdΩ, (15)

where δϕJ̄ is the J ′ in Eq. (12) and based on Eq. (12) the

optimization is performed.

3. Computation algorithm

During the optimization, the objective functional is con-

sidered to be converged when it satisfies the following crite-

rion:

|Jm − Jm−1|
Jm−1

≤ ϵ, (16)

where m represents the step number of the optimization pro-

cess.

The computation flow of the optimization is shown as fol-

lows:

(i) Initialize the value of ϕ, u and p in the design domain

D;

(ii) Compute the flow field by the lattice kinetic scheme,

save u and p of all time steps;
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(iii) Calculate the objective functional, if Eq. (16) and the

volume constraint Eq. (2) are satisfied, terminate the

optimization. Otherwise go to step (iv);

(iv) Calculate the design sensitivity and update ϕ using

Eq. (12), then go back to step (ii) and repeat the fol-

lowing steps.

4. Numerical examples

In this section, the validity of the design sensitivity is con-

firmed and numerical examples of minimizing and maximiz-

ing the dissipation kinetic energy are implemented. In all

the numerical examples, the Reynolds number Re is defined

by

Re =
umaxL

ν
,

where umax is the maximum velocity on Γv, L is the repre-

sentative length of Γv.

4.1. Validation of the design sensitivity

The validity of the design sensitivity δϕJ̄ in Eq. (15) can

be confirmed if it equals to the finite difference of objective

functional. Following the research by Yaji et al.,(22) we cal-

culate the finite difference of objective functional denoted by

J ′
F using the central difference scheme,

J ′
F =

J̄ [χϕ + ϵ1]− J̄ [χϕ − ϵ1]

2ϵ1
, (17)

where ϵ1 is a small positive variation of χϕ. The objective is

to maximize the dissipation kinetic energy of unsteady flow.

The design domain is depicted in Fig. 4, which is discretized

into 100∆x × 100∆x lattice. A circular obstacle with the

radius of 15∆x is placed at the center of the design domain

and the observation nodes are chosen as the grids with co-

ordinate of x = 50∆x, y = 1∆x, ..., 100∆x. The initial value

of ϕ is given as ϕ = −1.0 on the circular obstacle and the

boundary of the design domain, ϕ = 1 at the fluid field, and

ϵ1 = 1.0× 10−3. The Reynolds number is Re = 20. The ve-

locity prescribed boundary Γv is at the center of the left side

boundary, and the prescribed velocity is given as u = (U, 0),

where U is given as

U =
4umax(y2 − y)(y − y1) sin(ωt)

(y2 − y1)2
, (18)

and y1, y2 are the coordinates of the lower and upper ends of

Γv on y-axis. ω is the angular velocity, ω = π
25
, which decides

the change frequency of velocity. The pressure prescribed

boundary Γp is at the center of right side boundary, and the

prescribed pressure is given as P = 1
3
. The total number of

the computation step of lattice kinetic scheme is n = 4000

steps. The observation nodes are chosen as x = 50∆x, y =

0, ..., 100∆x.

The finite difference approximation of the objective func-

tional J ′
F and the design sensitivity values calculated directly

Fig. 4 The design domain for the validation of design

sensitivity.

by the expression of δϕJ̄ at the observation nodes are com-

pared in Fig.5, from which one can see that the design sensi-

tivity values calculated by the present expression show good

agreement with the finite difference approximation of the

objective functional confirming the validity of the proposed

design sensitivity.
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Fig. 5 Compare the design sensitivity and the finite dif-

ference of objective functional.

4.2. Minimizing dissipation kinetic energy

In the numerical examples of this study, the initial distri-

bution of ϕ is given as ϕt=0 = 1.0 inside the design domain

and ϕt=0 = −1.0 on the wall of design domain, i.e., the de-

sign domain is entirely filled of fluid at the initial step of the

optimization process.

The diffuser problem aiming at minimizing the dissipa-

tion was commonly presented as a validation test case. In

this study, we implement a two-dimensional diffuser exam-

ple to test the proposed method, and we compare the op-

timization results of steady flow and unsteady flow. Also,

we compare the different optimization results of minimiza-

tion and maximization of dissipation. The design domain

is depicted in Fig. 6 and is discretized into 100∆x × 100∆x

lattice points. The velocity prescribed boundary Γv is at
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the left side boundary and the prescribed velocity is given

as Eq. (18), where umax = 0.01. The pressure prescribed

boundary Γp is at the center of right side boundary of de-

sign domain and P = 1
3
. Re = 20, Vmax = 0.6V0, V0 is the

fluid volume at the initial step of the optimization.

Fig. 6 Design domain for the minimization of dissipation

energy.

For the unsteady case, the angular frequency is set as

ω = π
25

and the computation steps of lattice kinetic scheme

is n = 4000 steps. For the steady case, the optimization

is performed according to the method proposed by Yaji et

al.,(20) where the objective functional is calculated when the

fluid reaches a steady state after a number of steps’ compu-

tation of lattice kinetic scheme, and the prescribed velocity

at Γv is given as

U =
4umax(y − y1)(y2 − y)

(y2 − y1)2
. (19)

The optimized configurations of steady and unsteady fluid

are shown in Fig. 7. The blue area represents the solid do-

main and white area represents the fluid domain. From

Fig. 7, one can see that a wide channel is generated to re-

duce the dissipation kinetic energy in both cases. The ob-

jective J and the volume VΩ of two cases are compared in

Table 1, where J0 and V0 denote the objective and volume

computed at the initial step of the optimization. Comparing

the objective value, we find that the dissipation is reduced

efficiently in the optimization for unsteady case, where a

wider and straight flow channel is generated to reduce the

dissipation.(1)

Table 1: The values of the objective and volume of min-

imizing the dissipation kinetic energy

Objective value (J/J0) Volume (VΩ/V0)

Steady 2.80 54.56%

Unsteady 0.56 51.64%

(a) Steady (b) Unsteady

Fig. 7 Optimized configurations of minimizing the dissi-

pation energy.

4.3. Maximizing dissipation kinetic energy

In this section, numerical examples of maximizing the dis-

sipation of the kinetic energy are implemented. The design

domain is the same as that of Section 4.2 and is discretized

into 100∆x× 100∆x lattice. Same values are given for these

parameters as in Section 4.2: the volume constraint V , pre-

scribed velocity U at Γv, prescribed pressure P at Γp, compu-

tation step number n, inflow frequency ω and the Reynolds

number Re.

(a) Steady (b) Unsteady

Fig. 8 Optimized configurations of maximizing the dissi-

pation energy.

Fig. 8(a) shows the optimized configuration for the steady

flow, where the flow channel is divided to narrow channels by

solid material. Fig. 8(b) shows the optimized configuration

for the unsteady flow, in which islands are generated along

the boundary of flow channel. The configurations at differ-

ent iterations during the optimization of the steady case are

shown in Fig. 9(a), and the configurations of the unsteady

case are shown in Fig.9(b). Fig.9 shows that the solid mate-

rial is generated firstly near the boundary Γp to prevent the

fluid from flowing out directly, helping increase the dissipa-

tion.

The distribution of the dissipation energy at the initial and

final iteration steps are shown in Fig. 10, where Fig. 10(a) is

for the steady case and Fig. 10(b) for the unsteady case.

The value of the objective J and the volume VΩ are shown

in Table 2, from which one can see that the dissipation en-

ergy is increased in the steady and unsteady case, and the
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　 Iter. 1 　 Iter. 28 　 Iter. 48 　 Iter. 100

(a) Steady

　 Iter. 1 　 Iter. 28 　 Iter. 32 　 Iter. 100

(b) Unsteady

Fig. 9 Configurations at different iterations
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Fig. 10 Distribution of the dissipation kinetic energy in

cases of maximizing dissipation.

increasing rate of objective value for the steady case is much

greater than that of the unsteady case. In the optimized

configuration of steady flow case, the generated solid ma-

terials divide the flow to narrow streams in the optimized

configuration, which can increase the velocity shear. Since

the dissipation energy is formulated by velocity shear, the

dissipation energy is greatly increased in the optimized con-

figuration.

4.4. Dependence of the results on the inflow fre-

quency

In this section, the influence of the inflow frequency is

Table 2: Objective and volume value of maximizing dis-

sipation kinetic energy

Objective value (J/J0) Volume (VΩ/V0)

Steady 104.03 51.06%

Unsteady 1.12 49.90%

discussed. The design domain is depicted in Fig. 11 and is

discretized into 100∆x × 100∆x lattice. The velocity pre-

scribed boundary Γv and the pressure prescribed boundary

Γp are located at the center of left and right side boundaries,

respectively. The velocity on Γv is given as

U =
4umax(y − y1)(y2 − y) cos(ωt)

(y2 − y1)2
, (20)

where umax = 0.01. The pressure on Γp is P = 1
3
, and

Vmax = 0.6V0, Re = 20 and n = 7200. Numerical examples

for different values of ω: ω = π
50
, π
100

and π
150

are presented.

Fig. 11 The design domain of the examples for different

ω.

The optimized configurations are shown in Fig. 12, where

Fig. 12(a) is for ω = π
50
, Fig. 12(b) for ω = π

100
and Fig. 12(c)

for ω = π
150

. Fig.12 shows that the boundaries of the channel

become simple against the increase of ω. The values of the

objective and the volume are compared in Table 3, from

which we find that the objective value increases against the

decrease of ω.

(a) ω = π
50

(b) ω = π
100

(c) ω = π
150

Fig. 12 Optimized configurations of different ω.
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Table 3: The values of the objective and volume in

numerical examples for different ω

ω Objective value (J/J0) Volume (VΩ/V0)

π
50 1.22 52.86%

π
100 1.85 47.90%

π
150 2.27 47.80%

The distribution of the dissipation of the kinetic energy

at the initial and final iteration steps for three cases are

shown in Fig.13. The kinetic energy is dissipated mostly near

the velocity prescribed boundary Γv. The kinetic energy is

dissipated soon after it enters the cavity.

 0

 5x10
-5

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

Initial iteration
 0

 5x10
-5

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

Final iteration

(a) ω = π
50

 0

 5x10
-5

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

Initial iteration
 0

 5x10
-5

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

Final iteration

(b) ω = π
100

 0

 5x10
-5

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

Initial iteration
 0

 5x10
-5

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

Final iteration

(c) ω = π
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Fig. 13 Distribution of the dissipation of the kinetic en-

ergy.

4.5. Dependence of the results on the Reynolds num-

ber

We now test the influence of the Reynolds number on

the optimization results. The design domain is depicted

in Fig. 14, and is discretized into 100∆x × 100∆x lattice.

The velocity prescribed boundary Γv is at the center of the

left side bounday, and the prescribed velocity is given by

Eq. (20), where umax = 0.05. The pressure prescribed bound-

ary Γp is at the center of the right side boundary, and P = 1
3
.

Vmax = 0.7V0, n = 7200 and ω = π
50
. Numerical examples of

different Reynolds number: Re = 20, 50, 100, are presented.

Fig. 14 The design domain of examples for different

Reynolds number.

The optimized configurations are shown in Fig.15, Fig.15(a)

for Re = 20, Fig. 15(b) Re = 50 and Fig. 15(c) for Re = 100.

From Fig.15, we find that the boundary size of concavity and

extrusion of the channels becomes slightly smaller against

the increasing of Re, and this can be explained that flow

of a higher Reynolds number has a stronger inertial force,

hence, it is difficult for a change in the velocity of flow.

(a) Re = 20 (b) Re = 50 (c) Re = 100

Fig. 15 Optimized configurations of different Reynolds

number.

5. Conclusions

This study proposes a topology optimization method for

maximizing the dissipation of kinetic energy of incompress-

ible unsteady Navier-Stokes fluid using the lattice kinetic

scheme. The adjoint equation of lattice kinetic scheme and

design sensitivity for unsteady flow are derived. The validity

of the design sensitivity and the utility of the optimization

method are demonstrated through some numerical examples.

This research can be applied to the structure design of hy-

draulic anti-vibration devices.

−  20  −



References

(1) Borrvall, M. and Petersson, J., Topology optimization

of fluids in Stokes flow, International journal for nu-

merical methods in fluids, Vol. 41, No. 1, pp. 77–107,

2003.

(2) Gersborg-Hansen, A., Sigmund, O. and Habor, R.,

Topology optimization of channel flow problems, Struc-

tural and Multidisciplinary Optimization, Vol. 30,

pp. 181–192, 2004.

(3) Andreasen, C.S., Gersborg, A.R. and Sigmund, O.,

Topology optimization of microfluidic mixers, Interna-

tional journal for numerical methods in fluids, Vol. 61,

No. 5, pp. 498–513, 2009.

(4) Makhijia, D., Pingen, G., Yang, R. and Maute, K.,

Toplogy optimization of multi-component flows using a

multi-relaxation time lattice Boltzmann emthod, Com-

puters and Fluids, Vol. 67, pp. 104–114, 2012.

(5) Pingen, G., Evgrafov, A. and Maute, K., Toplogy op-

timization of flow domains using the lattice Boltzmann

method, Structural and Multidisplinary Optimization,

Vol. 34, pp. 507–524, 2007.

(6) Kreissl,S., Pingen, G. and Maute, K., An explicit level

set approach for generalized shape optimization of fluids

with the lattice Boltzmann method, International Jour-

nal for Numerical Methods in Fluids, Vol. 65, pp. 496–

519, 2009.

(7) Pingen, G. and Maute, K., Optimal design for non-

Newtonian flows using a topology optimization ap-

proach, Computers and Mathematics with Applications,

Vol. 59, pp. 2340–2350, 2010.

(8) Inamuro, T., A lattice kinetic scheme for incompressible

viscous flows with heat transfer, Philosophical transac-

tions of the Royal society A, Vol. 360, pp. 477–484, 2002.

(9) Sone, Y., Notes on kinetic-equation approach of fluid-

dynamic equations, Department of Mechanics, Royal

Institute of Technology, Stockholm, 2000.

(10) Junk, M. and Raghurama Rao, S.V., A New Discrete

Velocity Method for Navier-Stokes Equations, Journal

of Computational Physics, Vol. 155, No. 1, pp. 178–198,

2010.

(11) Succi, S., The lattice Boltzmann equation for fluid dy-

namics and beyond, Oxford University Press, 2010.

(12) He, X. and Luo, L.S., Lattice Boltzmann model for

the incompressible Navier-Stokes equation, Journal of

statistical physics, Vol. 88, pp. 927–944, 1997.

(13) Kreissl, S., Pingen, G. and Maute, K., Topology op-

timization for unsteady flow, International Journal of

Numerical Methods in Engineering, Vol. 87, No. 13,

pp. 1229–1253, 2011.

(14) Deng, Y., Liu, Z., Zhang, P., Liu, Y. and Wu,

Y., Topology optimization of unsteady incompressible

Navier-Stokes flows, Journal of Computational Physics,

Vol. 230, No. 17, pp. 6688–6708, 2011.

(15) Nørgaard, S., Sigmund, O. and Lazarov, B., Topology

optimization of unsteady flow problems using the lattice

Boltzmann method, Journal of Computational Physics,

Vol. 307, No. 17, pp. 291–307, 2016.

(16) Chen, C., Yaji, K., Yamada, T., Izui, K. and Nishiwaki,

S., Local-in-time adjoint-based topology optimization

of unsteady fluid flows using the lattice Boltzmann

method, Mechanical Engineering Journal, Vol. 4, No. 3,

pp. 17-00120-17-00120, 2017.

(17) Nguyen, T., Isakari, H., Takahashi, T., Yaji, K.,

Yoshino. M. and Matsumoto, T, Level-set based topol-

ogy optimization of transient flow using lattice Boltz-

mann method considering an oscillating flow condition,

Computers and Mathematics with Applications, Vol. 80,

pp. 82–108, 2020.

(18) Lin, S., Zhao, L., Guest, J.K., Weihs, T.P. and Liu,

Z., Topology Optimization of Fixed-Geometry Fluid

Diodes, Journal of Mechanical Design, Vol. 137, No. 8,

2015.

(19) Sato, Y., Yaji, K. and Izui, K., Topology optimization

of a no-moving-part valve incorporating Pareto frontier

exploration, Structural Multidisciplinary Optimization,

Vol. 56, pp. 839–851, 2017.

(20) Yaji, K., Yamada, T., Yoshino, M. and Matsumoto,

T., Topology optimization using the lattice Boltzmann

method incorporating level set boundary expressions,

Journal of Computational Physics, Vol. 274, pp. 158–

181, 2014.

(21) Yamada,T., Izui, K., Nishiwaki, S. and Takezawa, A,

A topology optimization method based on the level set

method incorporating a fictitious interface energy, Com-

puter Methods in Applied Mechanics and Engineering,

Vol. 199, pp. 2876–2891, 2010.

(22) Yaji,K., Yamada, T., Yoshino, M. and Matsumoto,T.,

Topology optimization in thermal-fluid flow using the

lattice Boltzmann method, Journal of Computational

Physics, Vol. 307, pp. 355–377, 2016.

−  21  −






