3次元Helmholtz方程式の2周期境界値問題に対する

isogeometric境界要素法の開発

DEVELOPMENT OF ISOGEOMETRIC BOUNDARY ELEMENT METHOD

FOR DOUBLY PERIODIC BOUNDARY VALUE PROBLEMS FOR 3D HELMHOLTZ EQUATION

角谷 将基1),高橋 徹2),飯盛 浩司3),松本 敏郎4)

Masaki SUMIYA, Toru TAKAHASHI, Hiroshi ISAKARI and Toshiro MATSUMOTO

1) 名古屋大学大学院工学研究科	(〒 464-8603	名古屋市千種区不老町,	E-mail: ma_sumiya@nuem.nagoya-u.ac.jp)
2) 名古屋大学大学院工学研究科	(〒 464-8603	名古屋市千種区不老町,	E-mail: ttaka@nuem.nagoya-u.ac.jp)
3) 名古屋大学大学院工学研究科	(〒 464-8603	名古屋市千種区不老町,	E-mail: isakari@nuem.nagoya-u.ac.jp)
4) 名古屋大学大学院工学研究科	(〒 464-8603	名古屋市千種区不老町,	E-mail: t.matsumoto@nuem.nagoya-u.ac.jp)

We newly incorporate the isogeometric analysis (IGA) to the boundary element method (BEM) to solve the doubly-periodic boundary value problems for three-dimensional Helmholtz equation. Both the surface of the computation domain and the boundary densities in the underlying boundary integral equations are discretised successfully with the tensor product of the B-spline bases, following the concept of the IGA. We validated the proposed isogeometric BEM (IGBEM) through the numerical examples.

 ${\it Key\ Words}\colon$ Boundary element method, Isogeometric analysis, Periodic boundary value problem

1. 緒言

本研究グループは、周期構造と波動の相互作用に関する 解析と設計に資する数値解析技術の確立と言う立場から、 近年注目を集めている isogeometric 解析 (IGA) に立脚した 境界要素法 (BEM) の開発を行っている ^(1, 2, 3, 4)。ここで、 IGA とは、CAD において幾何形状を表現するために一般に 用いられている非一様有理 B-spline (NURBS) 関数を、形 状関数と補間関数に採用した一種の isoparametric 要素に関 連する離散化体系である^(5,6)。直近では、2次元 Helmholtz 方程式の1周期境界値問題に対する isogeometric 境界要素 法(IGBEM)を提案し、シリコン太陽電池の電極形状の最 適設計に応用した^(7,8)。本研究はこれにならい、3次元2 周期境界値問題に対する IGBEM の開発を目的とする。な お、3次元 Helmholtz 方程式に対する IGBEM は過去に研究 例^(9,10,11)があるが、周期境界値問題を扱ったものはない。 また、本研究グループによる報告⁽⁴⁾では、本研究と同じ3 次元 Helmholtz 方程式に関する2周期境界値問題を扱ってい るが、IGBEM における特異積分の評価について記したもの であり、周期境界値問題を解くには至っていない。

以下,2節では本3次元2周期境界値問題の定式化とその

IGBEM の構成について述べる。3節では本 IGBEM の妥当 性を検証する。最後、4節で本研究の結論を述べる。

2. IGBEM の構成

2.1. 3D Helmholtz 方程式に関する 2 周期境界値問題

3次元空間において、 x_1 および x_2 軸方向に周期的であり、 x_3 軸に沿って異なる媒質が積層した系におけるスカラー波動 散乱問題を考える。本研究では簡単のため二層 Ω_1 、 Ω_2 の場合 について考える (Fig. 1)。ここで、 x_1 、 x_2 軸方向の周期をそ れぞれ L_1 、 L_2 とする。このとき、整数 μ_1 、 μ_2 の組によって 定まる領域 [μ_1L_1 , (μ_1 +1) L_1]×[μ_2L_2 , (μ_2 +1) L_2]×[$-\infty$, ∞] について、 $\mu_1 = \mu_2 = 0$ の領域を unit cell (UC)、それ以外 の領域を replica cell (RC) と呼ぶ。ここで、 $\Omega_1 \ge \Omega_2$ の界 面(境界)を S と表し、UC に含まれる S の部分を S_0 と 表す。境界 S は滑らかであると仮定する。また、UC の側面 ($x_1 = 0, L_1$ および $x_2 = 0, L_2$)を周期境界と呼ぶ。

領域 Ω_m (m = 1, 2) におけるスカラー波動場 $u_m : \mathbb{R}^3 \to \mathbb{C}$ は、次の 3 次元 Helmholtz 方程式、境界条件および擬周期境

²⁰¹⁷ 年 9 月 28 日受付, 2017 年 11 月 6 日受理

界条件を満たすものとする:

$$\Delta u_m + k_m^2 u_m = 0 \quad \text{in } \Omega_m \tag{1a}$$

$$u_1 = u_2(=:u), \quad \frac{1}{\varepsilon_1} \frac{\partial u_1}{\partial n} = \frac{1}{\varepsilon_2} \frac{\partial u_2}{\partial n}(=:q) \quad \text{on } S$$
 (1b)

$$\varphi(\boldsymbol{x} + \boldsymbol{p}^{(\mu)}) = e^{i\boldsymbol{K}_{\boldsymbol{m}} \cdot \boldsymbol{p}^{(\mu)}} \varphi(\boldsymbol{x}) \quad (\varphi = u, q)$$
(1c)

さらに、散乱場 $u^{inc} - u$ に関する放射条件を満たすものとす る。ここで、 ω は周波数、 ε_m は Ω_m の特性値(定数)、 k_m は Ω_m における波数 $k_m := \omega\sqrt{\varepsilon_m}$ 、 $p^{(\mu)} := (\mu_1 L_1, \mu_2 L_2, 0)^T$ は translation ベクトルである。法線 n は Ω_2 から Ω_1 に向かう方 向と定める。また、 $K_m := k_m (\cos\phi\sin\theta, \sin\phi\sin\theta, -\cos\theta)^T$ は波数ベクトル(角 θ および ϕ の定義は Fig. 1 の通り)で あり、領域 Ω_1 には振幅を A とする平面入射波 $u^{inc}(x) := Ae^{iK_1 \cdot x}$ を与える。

Fig. 1 Schematic illustration of the doubley periodic boundary value problems of interest.

2.2. 境界積分方程式

式(1)および放射条件によって表される本周期境界値問題 の境界積分方程式として次のものを用い、選点法で解く:

$$\left(\frac{1}{2}\mathcal{I}-\mathcal{D}^{1}\right)u(\boldsymbol{x})+\varepsilon_{1}\mathcal{S}^{1}q(\boldsymbol{x})=u^{\mathrm{inc}}(\boldsymbol{x})$$
 (2a)

$$\left(\frac{1}{2}\mathcal{I}+\mathcal{D}^2\right)u(\boldsymbol{x})-\varepsilon_2\mathcal{S}^2q(\boldsymbol{x})=0$$
 (2b)

ここで、 \mathcal{I} は恒等作用素、 $\mathcal{D}^m u$ 、 $\mathcal{S}^m q(\boldsymbol{x})$ はそれぞれ二重層 ポテンシャル、一重層ポテンシャルであり、

$$\mathcal{D}^{m}u(\boldsymbol{x}) := \int_{S_{0}} \frac{\partial G_{m}^{p}(\boldsymbol{x} - \boldsymbol{y})}{\partial n_{y}} u(\boldsymbol{y}) \mathrm{d}S_{y}$$
(3a)

$$\mathcal{S}^{m}q(\boldsymbol{x}) := \int_{S_{0}} G_{m}^{p}(\boldsymbol{x} - \boldsymbol{y})q(\boldsymbol{y})dS_{y}$$
(3b)

である。また、 $G_m^{p}(\boldsymbol{x}-\boldsymbol{y})$ は波数 k_m の周期 Green 関数

$$G_m^{\mathbf{p}}(\boldsymbol{x}-\boldsymbol{y}) = \frac{1}{4\pi} \sum_{\boldsymbol{\mu} \in \mathbb{Z}^2} e^{\mathbf{i}\boldsymbol{K}_{\boldsymbol{m}} \cdot \boldsymbol{p}^{(\mu)}} \frac{e^{\mathbf{i}\boldsymbol{k}_m |\boldsymbol{x}-(\boldsymbol{y}+\boldsymbol{p}^{(\mu)})|}}{|\boldsymbol{x}-(\boldsymbol{y}+\boldsymbol{p}^{(\mu)})|} \quad (4)$$

である。周期 Green 関数は、直接計算すると無限和の収束 が非常に遅いため、本研究では Ewald の方法に従い、収束の 速い二つの無限和(すなわち、実領域の関数 G^{p1} および波 数領域の関数 G^{p2})に分解して計算する(付録を参照)⁽¹²⁾。

2.3. isogeometric 離散化

本研究では、境界積分方程式(2)をIGAの概念に則って離 散化する。簡単のため、NURBS基底の重みを一様として得 られる (p 次の) B-spline 基底を用いる。基底を構成するた めのノットを { $t_0, t_1, \ldots, t_{n+p}$ } と表すとき、本研究では次式 のように最初と最後の p+1 個をそれぞれ重ねたノット(以 下、clamped ノットと呼ぶ)を採用する:

$$t_{i} = \begin{cases} 0 & i = 0, \dots, p \\ \frac{i-p}{n-p} & i = p+1, \dots, n-1 \\ 1 & i = n, \dots, n+p \end{cases}$$
(5)

ここで、 $S_0(\subset S)$ が滑らかである(「角」が存在しない)ように、中間のノットは重ねないと仮定した。このとき、p次 B-spline 基底は次の Cox de Boor の漸化式によって定義される⁽¹³⁾:

$$N_{j}^{0}(t) = \begin{cases} 1 & t_{j} \leq t < t_{j+1} \\ 0 & \text{otherwise} \end{cases}$$
$$N_{j}^{p}(t) = \frac{t - t_{j}}{t_{j+p} - t_{j}} N_{j}^{p-1}(t) + \frac{t_{j+p+1} - t}{t_{j+p+1} - t_{j+1}} N_{j+1}^{p}(t)$$

ここに、j = 0, ..., n - 1 であり、第二式右辺の各項におい て、分母が零となるものは形式的に除外すればよい。Fig. 2 は p = 2、n = 7の場合の B-spline 基底を例示している。

Fig. 2 B-spline bases for p = 2 and n = 7 with the n + p + 1 knots such as $\{0, 0, 0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1, 1, 1\}$.

さて、境界 S_0 を B-spline 基底の直積により表現する。す なわち、境界上の点 y を二つの曲面パラメータ s および tを用いて

$$\boldsymbol{y}(s,t) = \sum_{i=0}^{n_s - 1} \sum_{j=0}^{n_t - 1} N_i^p(s) N_j^p(t) \boldsymbol{P}_{ij}$$
(7)

と表現する。ここで、 $s \in [s_p, s_n]$ および $t \in [t_p, t_n]$ であり、 P_{ij} は与えるべき制御点を表す。本研究では、境界 S_0 の縁 上に P_{0j} 、 $P_{n_s-1,j}$ 、 P_{i0} および P_{i,n_t-1} を設ける(ここに $i = 0, ..., n_s - 1$ および $j = 0, ..., n_t - 1$)。このとき、式(5) に示した clamped ノットを用いているため、式(7) はこれら の制御点を通過することが保証される。この性質は S_0 の形 状を定めるのに都合が良い。その他の制御点については、式 (5) を満たす(特に、中間のノットは重ねない)ように、か つ、自己交差が発生しないように任意に定めればよい。この とき、 S_0 の縁を除いて、y(s,t) は微分可能な曲面となる。な お、 $y \circ S_0$ の縁を越えての微分可能性は制御点を適宜配置 して担保する必要がある。 境界変数 *u* および *q* も、*u_{ij}*,*q_{ij}* を制御変数(未知変数) として、次のように B-spline 基底の直積により補間する:

$$\varphi(s,t) = \sum_{i=0}^{n_s-1} \sum_{j=0}^{n_t-1} N_i^p(s) N_j^p(t) \varphi_{ij} \quad (\varphi = u, \ q)$$
(8)

式 (7) および (8) により境界積分方程式 (2) を離散化する と、次の線形方程式を得る:

$$\sum_{i=0}^{n_s-1} \sum_{j=0}^{n_t-1} (C_{kl,ij} - D_{kl,ij}^1) u_{ij} + \varepsilon_1 \sum_{i=0}^{n_s-1} \sum_{j=0}^{n_t-1} S_{kl,ij}^1 q_{ij} = u^{\text{inc}}(\boldsymbol{x}_{kl})$$
(9a)

$$\sum_{i=0}^{n_s-1} \sum_{j=0}^{n_t-1} (C_{kl,ij} + D_{kl,ij}^2) u_{ij} - \varepsilon_2 \sum_{i=0}^{n_s-1} \sum_{j=0}^{n_t-1} S_{kl,ij}^2 q_{ij} = 0$$
(9b)

ここに、 $k = 0, \dots, n_s - 2, \ l = 0, \dots, n_t - 2$ である。また、 $C_{l,l} \cdots = \frac{1}{2} N^p(\hat{s}_l) N^p(\hat{f}_l)$ (10a)

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\ell_l \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\ell_l \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\ell_l \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\ell_l \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\ell_l \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\ell_l \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\ell_l \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\ell_l \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\delta_k \right) V_j \left(\delta_k \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left(\delta_k \right) V_j \left(\delta_k \right)$$

$$C_{kl,ij} := \frac{1}{2} V_i \left(\delta_k \right) V_j \left$$

$$S_{kl,ij}^{m} := \int_{t_j} \int_{s_i} G_m^{p}(\boldsymbol{x}_{kl} - \boldsymbol{y}(s,t)) N_i^{p}(s) N_j^{p}(t) J(s,t) \mathrm{d}s \mathrm{d}t$$
(10b)

$$D_{kl,ij}^{m} := \int_{t_j}^{t_{j+p+1}} \int_{s_i}^{s_{i+p+1}} \frac{\partial G_m^p(\boldsymbol{x}_{kl} - \boldsymbol{y}(s,t))}{\partial n_y} N_i^p(s) N_j^p(t) J(s,t) \mathrm{d}s \mathrm{d}t \quad (10c)$$

ここに、 $J(s,t) := \left| \frac{\partial y}{\partial s} \times \frac{\partial y}{\partial t} \right|$ はヤコビアンを表す。なお、 式 (10b) および (10c) の積分区間は、 $N_j^p(t)$ の台が $t_j \le t \le t_{j+p+1}$ であると言う事実により定まるものである。

式 (9) に含まれる未知変数の数は $2n_sn_t$ であるが、擬周期 境界条件により次のような $2(n_s + n_t - 1)$ 個の関係式が得ら れる (m = 1, 2):

$\varphi_{n_s-1,j} = \mathrm{e}^{\mathrm{i}K_{m1}L_1}\varphi_{0j}$	$(j=0,\ldots,n_t-2)$
$\varphi_{i,n_t-1} = \mathrm{e}^{\mathrm{i}K_{m_2}L_2}\varphi_{i0}$	$(i=0,\ldots,n_s-2)$
$\varphi_{n_s-1,n_t-1} = e^{i(K_1L_1+K_2L_2)}\varphi_{00}$	

ここに、 K_{m1} 、 K_{m2} は波数ベクトル Kの x_1 、 x_2 成分であ る。よって、未知数は $2(n_s - 1)(n_t - 1)$ 個に減らすことが できる。したがって、同数の方程式を得るために、 S_0 上に $(n_s - 1)(n_t - 1)$ 個の選点を設ければよい。そこで、二次元 問題の場合にならい ^(2,3)、選点を $x_{kl} := y(\hat{s}_k, \hat{t}_l)$ (ここに $k = 0, \ldots, n_s - 2, l = 0, \ldots, n_t - 2$) と表すとき、s 方向に 関して k 番目の選点に対応するパラメータ \hat{s}_k は、 $N_k^p(s)$ を 最大化するようなs に定める。 \hat{t}_l も同様に定める。

2.4. 特異積分の評価

式 (10b) および (10c) の積分は、x がy に一致する領域で 特異性を有する。本研究はこれらの特異積分を Radial Integral Method (RIM)を用いて評価する ^(14, 15)。そのために、 Ewald の方法で分解された周期 Green 関数の実領域の関数 を、特異項と正則項に更に分解し、特異項 $\frac{1}{4\pi |x-y|}$ およびそ の法線微分に関する積分に RIM を用いる。

実装した RIM を定積分

$$I(oldsymbol{x}) := \int_A rac{1}{|oldsymbol{x}-oldsymbol{y}|^eta} rac{\partial |oldsymbol{x}-oldsymbol{y}|}{\partial x_1} \mathrm{d}S_2$$

の評価に適用し、その数値精度を測定した。ここで、 β は特 異性のオーダーを表すパラメータであり、本研究の用途に合 わせて β = 1,2,3 とした。また、 $A := [0,4] \times [-1,1] \times [0,0]$ ($x_3 = 0$ 上の長方形領域)、 $x := (\frac{1}{2},1,0)$ とした。Table 1 に 理論値との相対誤差を示す。参考として、文献⁽¹⁵⁾の結果も 示すが、その計算に用いられた各種パラメータの値は不明で ある。そのため、本計算値と参照値は完全に一致はしていな いが、同程度の精度が得られていることがわかる。

Table 1 Accuracy of the numerical integral of $I(\mathbf{x})$ with the RIM.

β	理論値	本研究		_{文献} (15)	
		計算值	相対誤差	計算值	相対誤差
1	-2.057701	-2.0577013	1.4×10^{-7}	-2.05769	5.4×10^{-6}
2	-1.866635	-1.8666419	3.7×10^{-6}	-1.86667	1.9×10^{-5}
3	-1.947746	-1.9477702	1.2×10^{-5}	-1.94782	3.8×10^{-5}

本 IGBEM では、空間の周期性に起因して発生する特異積 分に留意する必要がある。例えば、周期境界 $\{x|x_1 = 0\} \cap S_0$ 上に位置する選点 x_{0l} を考える (Fig. 3-(a))。この選点に関 して UC 上で周期 Green 関数 G^p を含む積分を実行する際、 x_{0l} を含む UC の左端の領域(同図の緑色の枠)の積分が特 異積分であることは明らかであるが、UC の右端の領域(同 図の赤色の枠)の積分も特異積分である。なぜならば、その 領域は UC の左隣りの RC (つまり (μ_1, μ_2) = (-1,0) に相 当する RC)の右端の領域(同図の桃色の枠)に該当し、 G^p の (μ_1, μ_2) = (-1,0)の成分が特異となるためである。

同様に、 { \boldsymbol{x} | $x_2 = 0$ } ∩ S_0 上の選点に対しては G^p の (μ_1, μ_2) = (0, -1) の成分が特異であり (Fig. 3-(b))、選点 (0,0) に対しては (μ_1, μ_2) = (0, -1), (-1, 0), (-1, -1) の成分 が特異である (Fig. 3-(c))。このような特異積分も RIM を用 いて評価する。

Fig. 3 Singular integrals specific to the underlying doubly periodic problems. Here, $\boldsymbol{e}_1 := (1,0,0)^T$ and $\boldsymbol{e}_2 := (0,1,0)^T$ are the unit vectors.

3. 数值実験

前節に基づいて開発した IGBEM コードの妥当性を検証 するための数値実験を行なった。比較として、区分一定要素 を用いた 2 周期境界値問題用の BEM(以下、CBEM と呼 ぶ)も実行した。なお、CBEM では近特異積分の解析的な 評価も考慮した。すなわち、 G^{p} に含まれる特異項 $\frac{1}{4\pi |x-y|}$ およびその法線微分の積分に関して、UC 内の選点 x に対 する UC 内の区分一定要素については全て解析的に評価す る。また、UC 内の x に対する RC 内の要素については、 $|x_1 - (y_1 + \mu_1 L_1)| \lesssim \frac{L_1}{10}$ または $|x_2 - (y_2 + \mu_2 L_2)| \lesssim \frac{L_2}{10}$ を 満たす場合、解析的に評価した。

3.1. 平面境界による反射と透過

領域 $\Omega_1 \geq \Omega_2$ の境界 *S* が平面である場合を考える。領域 の属性値は $\varepsilon_1 = 1$ 、 $\varepsilon_2 = 2 \geq 0$ 、周波数 は $\omega = 1 \geq \tau$ る。 また平面波の入射角は $\theta = \frac{\pi}{4}$, $\phi = 0 \geq 0$ た。この問題は半 無限場の非周期問題であるが、周期を任意とする周期問題と 捉えることができる。本計算では周期を $L_1 = 1$ 、 $L_2 = 1 \geq 0$ した。

本問題の解析解は計算することができて、境界上の *u* と *q* は次のようになる:

$$u(x_1, x_2) = \frac{2\eta_1 \cos \theta}{\eta_2 \cos \theta + \eta_1 \cos \psi} e^{ik_2(x_1 \sin \theta \cos \phi + x_2 \sin \theta \sin \phi)}$$
$$q(x_1, x_2) = \frac{-ik_2 \cos \theta}{\varepsilon_2} u(x_1, x_2)$$

ここに、 $\eta_i := \sqrt{\varepsilon_i}$ であり、 $\psi := \sin^{-1} \left(\frac{\eta_1}{\eta_2} \sin \theta \right)$ である。 本 IGBEM では、 S_0 を2次の B-spline 基底により生成す

るが、その際に必要な制御点 **P**_{ij} は次のように定める:

$$\boldsymbol{P}_{ij} = \left(\frac{iL_1}{n_s - 1}, \frac{jL_2}{n_t - 1}, 0\right)^T$$

ここに、 $i = 0, \dots, n_s - 1, j = 0, \dots, n_t - 1$ 。また、 $n_s \equiv n_t =: \nu$ として、 $\nu = 8, 16, 32$ と変化させる。

線形方程式 (9) は GMRES 法 ⁽¹⁶⁾ を用いて解く。反復の停止条件は (9) の残差の l_2 ノルムを右辺ベクトルの l_2 ノルム で除したものが tol = 10^{-5} 以下であるとした。

線形方程式 (9) を解いて得られた係数 u_{ij} および q_{ij} を (8) に代入し、パラメータ s、t として選点に対応する \hat{s}_k 、 \hat{t}_l を 代入して得られた数値解を $\tilde{u}(\hat{s}_k, \hat{t}_l)$ および $\tilde{q}(\hat{s}_k, \hat{t}_l)$ と表す。 これらと解析解 $u(\hat{s}_k, \hat{t}_l)$ および $q(\hat{s}_k, \hat{t}_l)$ との相対 l_2 誤差、 すなわち

$$E_{\varphi} := \sqrt{\frac{\sum_{k} \sum_{l} \left| \varphi(\hat{s}_{k}, \hat{t}_{l}) - \tilde{\varphi}(\hat{s}_{k}, \hat{t}_{l}) \right|^{2}}{\sum_{k} \sum_{l} \left| \tilde{\varphi}(\hat{s}_{k}, \hat{t}_{l}) \right|^{2}}} \quad (\varphi = u, q)$$

を計測する。また、区分一定要素の場合には、選点において 得られた境界量について相対誤差を計測した。

未知数の数に対する相対誤差を Fig. 4 に示す。ここで、 CBEM の未知数の数は、 $S_0 \in m \times m$ 個の四角形に分割し た後に、各四角形を等分して得られる三角形を区分一定要素 としているため、 $2m^2$ である。なお、m は 8,16,32 とした。 同図において IGBEM と CBEM を比較すると、 E_u につい ては IGBEM が 2 次、CBEM が 1 次オーダーで収束してい る。一方、 E_q については共に 1 次オーダーでの取っしてい る。一方、 E_q については共に 1 次オーダーであり、IGBEM の結果は CBEM よりもわずかに劣る結果となった。このよ うに q が振る舞う理由は現時点で不明であるが、未知数の増 加と共に誤差が収束した意味において、本 IGBEM の妥当性 が示されたと考えられる。

Fig. 4 Relative l_2 error for the first example.

3.2. 曲面境界による透過問題

次に、境界 S₀を非平面

$$x_3 = \frac{1}{2\pi} \sin \frac{2\pi x_1}{L_1} \sin \frac{2\pi x_2}{L_2}$$

とする2周期境界値問題を考える。ここで、S₀を生成する ために必要な制御点は

$$\boldsymbol{P}_{ij} = \left(\frac{iL_1}{n_s - 1}, \frac{jL_2}{n_t - 1}, \frac{1}{2\pi}\sin(2\pi\frac{i}{n_s - 1})\sin(2\pi\frac{j}{n_t - 1})\right)^T$$
$$(i = 0, \dots, n_s - 1, j = 0, \dots, n_t - 1)$$

と定めた。このとき、生成される境界は S₀ に完全に一致し ないが、境界形状は任意でよい問題設定であるため、この不 一致は以下の数値解析に影響は無い。また、

$$\frac{\partial x_3}{\partial x_1}\Big|_{x_1=0} = \left.\frac{\partial x_3}{\partial x_1}\right|_{x_1=L_1}, \quad \left.\frac{\partial x_3}{\partial x_2}\right|_{x_2=0} = \left.\frac{\partial x_3}{\partial x_2}\right|_{x_2=L_2}$$

であることから *S*₀ の縁で UC と RC は滑らかに接続してお り、いわゆる角点を考慮する必要がない事に注意する。

使用するノット数 ν (:= $n_s = n_t$) は 8、16、32 とする。 Fig. 5 に ν (:= $n_s = n_t$) = 8 の場合の P_{ij} および S_0 を示す。

Fig. 5 Boundary S_0 and the control points \boldsymbol{P}_{ij} of the second example in the case of $\nu(:=n_s=n_t)=8$.

本問題は $\varepsilon_1 \neq \varepsilon_2$ の場合には解析解が計算できないので、 $\varepsilon_1 \equiv \varepsilon_2 = 1$ として、入射波 u^{inc} が境界により反射すること なく伝搬するような問題とする。この場合、 S_0 上の解析解 u は u^{inc} そのものであり、q は u^{inc} の勾配と S_0 の法線の内 積から直ちに計算できる。

前例と同じように、未知数の数に対する相対誤差を Fig. 7 に示す。ここで、GMRES の相対許容残差 tol は 10^{-5} であ り、CBEM は実行に至っていない。この例題では、uの相対 誤差 E_u は未知数の数に依らず良好である *。 E_u は 10⁻⁵ 程度で停滞しているが、これは離散化誤差というよりもむし ろ、GMRES の相対許容残差 (10⁻⁵) によって生じた誤差と 考えられる。実際、相対許容残差 tol を 10⁻⁸ と変更した結 果、 E_u は 10⁻⁸ 程度となった (Fig. 7)。一方、相対許容残差 の値とは無関係に、q については前例と同じく1次オーダー の収束 ** に留まっており、Fig. 7 からわかるように CBEM よりも少し悪い。

なお、CBEM では近特異積分を考慮することで q の精度 が向上し、収束のオーダーも改善した。実際、Fig. 7 におけ る「CBEM*」は近特異積分を考慮しなかった場合の結果で ある。これは、本 IGBEM でも近特異積分を考慮することで q の精度が改善される可能性を示唆している。

Fig. 6 Relative l_2 -error for the second example (tol = 10^{-5}).

Fig. 7 Relative l_2 -error for the second example (tol = 10^{-8}).

4. 結論

本論文では2層からなる領域において、3次元 Helmholtz 方程式の2周期境界値問題を解くための isogeomtric 境界要

前の脚注と同じ議論により、(2b) から $q = \frac{1}{\varepsilon}S^{-1}(\frac{1}{2}I + D)u^{\text{inc}}$ が得られる。これは、qの精度については作用素 S および D の離 散化に確かに影響を受ける事を表している。 素法(IGBEM)を提案した。境界と境界密度は共に B-spline 基底関数の直積によって離散化した。その際、clamped ノッ トを利用することにより境界が容易に設定できるように考慮 した。また、空間の周期性に伴って生じる特異積分の存在を 勘案した上で、Radial Integral Method (RIM)によって数 値積分するものとした。開発した IGBEM で得られた数値解 析結果は概ね良好と判断できるが、流束 q の収束の振る舞い は予想外*と言え、近特異積分の影響を含めて今後はそ の誤差の原因を特定する必要がある。また、より現実的な問 題設定(3層以上の多層化、閉領域として表される介在物の 導入など)を行い、本 IGBEM の適応性を評価する必要があ る。さらに、2次元問題における先行研究^(7,8)で示したよ うに、IGBEM は一般に感度解析ないしは形状最適化と相性 が良く、その方面への応用も重要である。

付録: 関数 G^{p1} と G^{p2} の具体形⁽¹²⁾

式 (4) の周期 Green 関数 G_p は、Ewald の方法 ⁽¹²⁾ により、

$$G^{\mathrm{p}}(\boldsymbol{x} - \boldsymbol{y}) = G^{\mathrm{p}1}(\boldsymbol{x} - \boldsymbol{y}) + G^{\mathrm{p}2}(\boldsymbol{x} - \boldsymbol{y})$$

として収束の速い次の二つの関数 G^{p1} および G^{p2} に分解で きる。これらの具体形は以下のように表されるが、実領域の 関数 G^{p1} が、 $(\mu_1, \mu_2) = (0, 0)$ かつ j = 0 の項すなわち $\frac{1}{4\pi r}$ の存在により、r = 0 のときに特異であることがわかる:

$$G^{p1}(\boldsymbol{x} - \boldsymbol{y}) = \frac{a}{4\pi^{\frac{3}{2}}} \sum_{\mu \in \mathbb{Z}^2} e^{i\boldsymbol{K} \cdot \boldsymbol{p}^{(\mu)}}$$

$$\times \sum_{j=0}^{\infty} \frac{1}{j!} \left(\frac{k}{2a}\right)^{2j} (ar)^{2j-1} \Gamma\left(\frac{1}{2} - j, a^2 r^2\right)$$

$$G^{p2}(\boldsymbol{x} - \boldsymbol{y}) = \frac{i}{4L_1 L_2} \sum_{\nu \in \mathbb{Z}^2} \frac{1}{k\rho^{(\nu)}} e^{ik\boldsymbol{d}^{(\nu)} \cdot (\boldsymbol{x} - \boldsymbol{y})}$$

$$\times \left[e^{-ik\rho^{(\nu)}(x_3 - y_3)} \operatorname{erfc}\left(-i\frac{k\rho^{(\nu)}}{2a} + a(x_3 - y_3)\right) \right]$$

$$+ e^{ik\rho^{(\nu)}(x_3 - y_3)} \operatorname{erfc}\left(-i\frac{k\rho^{(\nu)}}{2a} - a(x_3 - y_3)\right) \right]$$

ここに、 $r := x - (y + p^{(\mu)}), r := |r|, \Gamma$ は不完全ガンマ関数、erfc は相補誤差関数 ⁽¹⁸⁾、 $q := (\frac{2\pi}{L_1}\nu_1, \frac{2\pi}{L_2}\nu_2, 0)^{\mathrm{T}}$ (ただし、 $\nu_1, \nu_2 \in \mathbb{Z}$)、 $d^{(\nu)} := \frac{1}{k}(K + q^{(\nu)}), \rho^{(\nu)} := \sqrt{1 - |d^{(\nu)}|^2}$ である。また、a は無限和の収束に関係するパラメータであり、無限和の収束判定に用いるパラメータ ϵ を 10^{-10} と与えることによって決定した。

謝辞:本研究は科学研究費(15K06683)の助成の元に遂行さ れた。また、脚注*および**に関しては匿名査読者のご見 解を参考にさせて頂いた。記して謝意を表す。

^{*}この E_u の振る舞いについては次のように説明される:式 (2) において $\varepsilon_1 = \varepsilon_2 =: \varepsilon$ とすると、 $\mathcal{D}^1 = \mathcal{D}^2 =: \mathcal{D}$ 、 $\mathcal{S}^1 = \mathcal{S}^2 =: \mathcal{S}$ と書ける。このとき、(2a) と (2b) の辺々を足すと $u = u^{\text{inc}}$ が得ら れる。したがって、数値解 u に含まれる誤差は u^{inc} を B-spline 基 底で近似する際に生じる誤差であると考えられる。そのため、uの 精度は未知数の数に依らず十分良いと考えられる。

^{***}予想外と言うのは、先行研究⁽³⁾である 2 次元解析において、 本論文と同種の数値解析例における IGBEM の q の相対 l_2 誤差精 度が CBEM よりも高いと言う事実に反したと言う意味である。な お、本研究と同様な clamped ノットに基づく B-spline 基底を採用 した場合⁽³⁾、q の収束オーダーは 0.5 程度であったが、周期性を考 慮した B-spline 基底を採用した場合⁽¹⁷⁾には q の収束オーダーは 1 程度に改善したことを付記する。

参考文献

- T. Takahashi, T. Matsumoto: An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions, Engineering Analysis with Boundary Elements, **36**(2012), pp. 1766–1775.
- (2) 榛葉祐太,高橋徹,飯盛浩司,松本敏郎:波動問題の1周 期境界値問題に対するアイソジオメトリック境界要素法 の開発,日本機械学会計算力学講演会論文集,28(2015), CDROM.
- (3) 角谷将基,高橋徹,飯盛浩司,松本敏郎:2次元 Helmholtz 方程式に対する周期アイソジオメトリック境界要素法の 開発と高速多重極法による高速化,計算工学講演会論文 集,21(2016), CDROM.
- (4) 角谷将基,高橋徹,飯盛浩司,松本敏郎:3次元2周期境 界値問題への isogeometric 境界要素法の適用,日本機械 学会計算力学講演会論文集,30(2017), CDROM.
- (5) T.J.R. Hughes, J.A. Cottrell: Isogeometric analysis CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, **194**(2005), pp. 4135–4195.
- (6) J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs: Isogeometric Analysis: Toward Integration of CAD and FEA, 1st Edition, Wiley Publishing, 2009.
- (7)山本達郎,高橋徹,飯盛浩司,松本敏郎:アイソジオメトリック境界要素法に基づく形状最適化,日本機械学会 東海支部総会講演会講演論文集,66(2017),CDROM.
- (8) T. Takahashi, T. Yamamoto, Y. Shimba, H. Isakari, T. Matsumoto: A framework of shape optimisation based on the isogeometric boundary element method toward designing thin-silicon photovoltaic devices. (submitted).
- (9) R. Simpson, M. Scott, M. Taus, D. Thomas, H. Lian: Acoustic isogeometric boundary element analysis, Computer Methods in Applied Mechanics and Engineering, 269(2014), pp. 265–290.

- (10) M. Peake, J. Trevelyan, G. Coates: Extended isogeometric boundary element method (XIBEM) for threedimensional medium-wave acoustic scattering problems, Computer Methods in Applied Mechanics and Engineering, **284**(2015), pp. 762–780,
- (11) L. Coox, O. Atak, D. Vandepitte, W. Desmet: An isogeometric indirect boundary element method for solving acoustic problems in open-boundary domains, Computer Methods in Applied Mechanics and Engineering, **316**(2017), pp. 186–208, special Issue on Isogeometric Analysis: Progress and Challenges.
- (12) S. Schmitt, T. Arens, K. Sandfort: Analysing Ewald's method for the evaluation of Green's functions for periodic media, IMA Journal of Applied Mathematics, 26(2013), pp. 405–431.
- (13) L. Piegl, W. Tiller: The NURBS Book, (1997), Springer.
- (14) X.W. Gao: The radial integration method for exaluation of domain integrals with boundary-only discretization, Engineering Analysis with Boundary Elements, 26(2002), pp. 905–916.
- (15) X.W. Gao: An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals, Comput. Method. Appl. Mech. Engrg., 199(2010), pp. 2856–2864.
- (16) Y. Saad, M. H. Schultz: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7(1986), pp. 856–869.
- (17) 榛葉祐太,高橋徹,山本達郎,飯盛浩司,松本敏郎:1周 期アイソジオメトリック境界要素法の開発と表面プラ ズモン解析への応用,電子情報通信学会技術研究報告 115(2015), pp. 69–74.
- (18) M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (eighth Dover printing) (1972), Dover Publications.