
Transactions of JASCOME Vol. 17 (16 December, 2017), Paper No. 22-171215 JASCOME

Quantum scattering theory and stealth finite element analysis
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We develop a novel method based on finite element analysis (FEA) to examine scattering

in finite, nanoscale systems. The essential Cauchy (mixed) boundary conditions (BCs)

needed in scattering are reduced to simpler Dirichlet BCs by introducing totally absorbing

elements, or “stealth elements,” whose material properties are optimized to give decaying

solutions vanishing at the boundaries. Schrödinger equation with a source term is dis-

cretized using the principle of stationary action to obtain highly accurate numerical near

field solutions. This approach provides excellent results for both open domains, as well as

with confined geometries. In 1D, we provide concrete examples and demonstrate the high

accuracy of this method. In 2D confined waveguides, we obtain scattered wavefunctions

for geometrically complex scattering centers, and multiple scattering that go beyond the

traditional perturbative and far field approximations. The modal analysis of reflected and

transmitted waves allows us to obtain transmission coefficients for both propagating and

evanescent modes.
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1. Introduction

In physics, scattering is a general phenomenon which is of

considerable interest from classical mechanics to relativistic

field theory.(1) Many of the early understanding of quan-

tum mechanics pioneered from scattering and collision ex-

periments.(2) Typically, in low energy quantum scattering

problems, we consider an incoming wave with known energy,

scattering amplitudes and cross-sections are determined in

the asymptotic limit.(3) However, in finite nanoscale sys-

tems, there is an urgency to understand near field scattering

behavior for several applications such as semiconductor res-

onant tunneling heterostructures, quantum cascade lasers,

scanning tunneling microscopy, tunneling resistance devices

and split-gate narrow channel MOSFETs.

Finite element analysis (FEA) is a generalized variational

approach in which we discretize the action integral to obtain

accurate numerical solutions.(4) The mixed (Cauchy) bound-

ary conditions (BCs) are crucial while using the principle of

stationary action to solve for scattering problems within the

variational approach. In general, the mixed BCs are dif-

ficult to implement in open domains and, for that matter

even in confined geometries, in 2D and 3D systems. In open

domains, the scattered wave is represented in terms of out-

Received: 26 Sept., 2017, Accepted: 6 Nov., 2017

going Hankel functions. The fact that the Hankel functions

of all orders have the same asymptotic behavior allows a sub-

stantial simplification in BCs. However, in considering finite

domain systems, this traditional procedure of applying BCs

requires a re-examination since we do not have an asymp-

totic limit as the active region is geometrically constrained.

Here we show that the use of absorbing material around the

scattering (active) region provides a unique way of reducing

the mixed BCs to much simpler Dirichlet BCs. The absorb-

ing finite elements, which we call “stealth elements”, have

material properties modified so as to provide damping of the

waves that impinge on them, with no reflection. The concept

of stealth elements draws on the idea of “perfectly matched

layers” used in electromagnetic (EM) scattering,(5) where we

allow the dielectric constant to be complex and vary its value

smoothly within each layer. In our case, we instead consider

a smoothly varying complex mass within stealth elements.

In the active region, we consider an electron antenna which

is provided by introducing a source term to the Schrödinger

equation.

In Sec. 2, we first discuss the mixed BCs in typical 1D

scattering problems and then show the method of reduc-

ing mixed BCs to Dirichlet BCs, by introducing stealth el-

ements. In Sec. 3, we define the Schrödinger equation with



Fig. 1: Scattering through a 1D barrier of height V0.

We consider an incoming plan wave with an amplitude

a and the energy E. The corresponding wavevector is

k =
√

2m∗E/~2. Here, r and t are the reflection and

transmission amplitudes, respectively.

a source term and obtain the source parameter using the

Green’s function technique. We discuss the finite element

method for scattering in Sec. 4. In Sec. 5, we extend our

formalism to study electron scattering from both repulsive

and attractive scatterers in a 2D waveguide. Conclusions

and future research directions are presented in Sec. 6.

2. Boundary conditions for scattering

We first briefly discuss the boundary conditions in a tra-

ditional 1D barrier scattering. In Fig. 1, we consider an

incoming plane wave from a source at x = −∞ with a given

energy E and an amplitude a. The total wavefunction in

region I and III are given by

ψI = aeikx + r e−ikx,

ψIII = teikx, (1)

where, the wavevector k =
√

2m∗E/~2 and m∗ is the effec-

tive mass of an electron. Hence we obtain Cauchy BCs at

xa and xb given by[
dψI(x)

dx
+ ikψI(x)

]
x=xa

= 2ikaeikx
∣∣∣
x=xa

,[
dψIII(x)

dx
− ikψIII(x)

]
x=xb

= 0. (2)

We reduce the above mixed BCs to simpler Dirichlet BCs by

creating absorbers on either side of the barrier (see Fig. 2).

We optimize the parameters within these absorbers in such

a way that there is no reflection from any wave incident on

them. We consider a complex electron effective mass m =

m∗ (1 + i α(x)) , where, α(x) is a cubic Hermite interpolation

polynomial which varies smoothly from 0 to αmax within

the stealth region and equal to 0 in the active region. Let

α(xa) = α(xb) = 0 and, α(xL) = α(xR) = αmax (see Fig. 2).

The wave equation within stealth regions is given by

d

dx

(
1

(1 + iα(x))

d

dx
ψ(x)

)
+ k2(1 + iα(x))ψ(x) = 0. (3)

Solutions to the above equation will have highly damped be-

havior due to suitably chosen α(x). Hence we apply Dirichlet

Fig.2: Scattering through a 1D barrier of height V0 with

stealth region on either side of the barrier. We consider

a source at x = x0 within the active region which injects

an incoming wave with an amplitude a and the energy

E in both directions. The corresponding wavevector is

k =
√

2m∗E/~2. Here, r and t are the reflection and

transmission coefficients respectively.

BCs that are given by ψ(xL) = ψ(xR) = 0. In Appendix A,

we derive the condition for no reflection at the stealth inter-

face and justify the choice for α(x) to be a smooth function.

3. Schrödinger equation with a source term

In the previous section, we created totally absorbing stealth

regions around the scattering center. Hence, we require an

electron antenna (source) which can inject plane waves of

given energy (E) and amplitude (a). The Schrödinger equa-

tion in the active region with a source term is given by[
− d

dx

(
~2

2m∗
d

dx

)
+ V (x)− E

]
ψ(x) = −S ~2

2m∗
δ(x− x0),

(4)

where, x0 is the location of a source within the active region

and S is the source parameter. In the absence of any po-

tential, the equation for Green’s function G(x − x0) in the

active region is given by[
− d

dx

(
~2

2m∗
d

dx

)
− E

]
G(x−x0) = −S ~2

2m∗
δ(x−x0). (5)

The Fourier transform of G(x− x0) is given by

G(x− x0) =
1

2π

∫ ∞
−∞
dk′ g(k′) exp(ik′(x− x0)). (6)

Substituting Eq. (6) in Eq. (5) and representing the δ func-

tion in the Fourier space we obtain

g(k′) = − S

2k

[
1

k′ − k −
1

k′ + k

]
. (7)

By using the inverse Fourier transformation and contour in-

tegration techniques we obtain

G(x− x0) =
S

2ik


exp(ik(x− x0)), x > x0;

exp(−ik(x− x0)), x < x0.

(8)

Hence, we identify the source parameter as S = 2ika, to ob-

tain plane waves with a specified amplitude a and wavevector

k.



Table 1: We compare the analytically and numerically

obtained transmission coefficients (T ) for a barrier of

width = 40Å. Here, stealth region width = 50Å, incom-

ing wave amplitude, a = 1 and the source antenna is lo-

cated at −40Å. Number of elements = 1000. We employ

the quintic Hermite interpolation polynomials. Effective

mass of conduction electron in GaAs, m∗ = 0.067me is

considered (me is the mass of an electron).

Barrier Incoming T T

Height (ev) energy(ev) (Analytical) (Numerical)

0.5 0.5 0.53212186 0.53211017

0.5 1.0 0.89786166 0.89786127

0.5 2.0 0.99976389 0.99967599

4. Finite element analysis for scattering

The action integral corresponding to Eq. (3) and Eq. (4)

is given by

A/T =

∫ xR

xL

dx
∂ψ∗(x)

∂x
· 1

(1 + α(x))

∂ψ(x)

∂x

+ ψ∗
[2m∗

~2
[
V (x)− E (1 + iα(x))

]]
ψ(x)

+

∫ xR

xL

dx ψ∗(x)S δ(x− x0), (9)

where, α(x) is equal to 0 in the active region. We are solving

here the time-independent problem so that the time integral

over the range [0, T ] in the action is simply T . Dirichlet BCs

are implemented at x = xL and x = xR. Discretization of the

above action integral within finite element framework and

variation with respect to ψ∗ provides us the total wavefunc-

tion throughout. In Table 1, we compare the transmission

coefficients obtained through our analysis and well known

analytical calculations for scattering from a 1D barrier po-

tential in GaAs. We achieve an accuracy of ∼ 10−4. We

can systematically increase the accuracy through mesh size

refinement (h-refinement), or by the use of higher order inter-

polation polynomials (p-refinement) for convergence within

the FEA.

Next, we consider the case of electron scattering through

a 1D double barrier potential in GaAs. In Fig. 3, we plot

the first above-barrier resonant state in a double barrier of

height 0.3eV. Notice that within stealth regions (shaded re-

gions) the wavefunction decay smoothly to zero. In Fig. 4,

we see that for the above barrier states, resonance occurs as

doublets which correspond to the confinement above each of

the barrier. Three resonant states below the barrier height

(0.3 eV) corresponds to electrons reasonably trapped within

the well between the two barriers.

5. Scattering in 2D waveguides

Fig.3: Probability distribution for the first above-barrier

resonant state with incoming energy 0.355eV is shown.

The source is located at 100 Å. The stealth region is

shaded in gray and the width of the stealth region is

equal to 50 Å.

Fig. 4: We have plotted the transmission coefficient as a

function of energy for a double barrier potential. Each

of the barriers is of height 0.3eV with a width of 100Å

and are 100Å apart.

Fig. 5: We show a schematic picture of scattering in a

2D waveguide of width w. We place the stealth region

at either end of the waveguide. The wave propagation

is along the x-axis.

Let us consider a 2D waveguide of width w with wave

propagation along the x-axis (see Fig. 5). We include the

stealth region at either end of the waveguide and a source

in the active region at x = x0. Particles are confined in the

transverse direction. Hence, we obtain the solutions, in the



y direction of the infinite potential well of width w. Thus

the total incident energy as a sum of the energies in x and y

directions is given by

En = Ex,n +
n2π2~2

2m∗w2
, (10)

where n is the incoming integer mode number. We refer

to Ey,n = n2π2~2/2m∗w2 as the subband minimum of the

mode n. The corresponding dispersion relation is given by

k2 = k2xn +
n2π2

w2
, (11)

where kxn is the wavevector and an is the specified ampli-

tude of the incoming plane wave in the mode n. The set of

propagating wavefunctions for an empty waveguide with a

source at x0 is given by{
φ±m(x, y)=exp(±ikxm |x− x0|) sin

(mπy
w

) ∣∣∣m ∈ N
}
. (12)

If we consider a scatterer centered at origin, the set of dif-

ferent possible evanescent modes is given by{
φ̃±m(x, y)=exp(±Kxm x) sin

(mπy
w

) ∣∣∣m ∈ N
}
, (13)

where Kxm =
√
m2π2/w2 − k2 represents the evanescent

wavevector. For a specified mode n and an amplitude an,

the incoming wave from the source is given by

ψn(x, y) =


an φ

+
n (x, y), x > x0;

an φ
−
n (x, y), x < x0.

(14)

The transmitted and reflected waves are given by

ψt(x, y)=
∑
m=1

k≥nπ/w

tnmφ
+
m(x, y) +

∑
m

k<nπ/w

t̃nmφ̃
−
m(x, y),

ψr(x, y)=
∑
m=1

k≥nπ/w

rnmφ
−
m(x, y) +

∑
m

k<nπ/w

r̃nmφ̃
+
m(x, y), (15)

where tnm and rnm are the transmission and reflection am-

plitudes for the propagating modes and, t̃nm and r̃nm are

the transmission and reflection amplitudes for the evanes-

cent modes, respectively. In our analysis we obtain the total

wavefunction which includes both propagating and evanes-

cent contributions throughout. We determine the transmis-

sion and reflection coefficients using the orthogonality of sine

functions at a fixed x = x′. For example,

tnm =

∫ w

0

dy
[
φ+
m(x′, y)

]∗ · ψt(x′, y). (16)

We carry out this integration on either side at an equal hor-

izontal distance (l) away from the scattering center. The

transmission coefficient (Tnm) for a propagating mode m is

defined as a ratio of the outgoing mode current (Jnm) to the

incoming current (Jin). Hence

Tnm =
Jnm
Jin

=
kxm |tnm|2

kxna2n
. (17)

Fig. 6: The transmission (T22) and reflection (R22) coef-

ficients are shown as a function of energy for the prop-

agating mode n = 2, with an incoming wave from the

same mode for scattering through a rectangular poten-

tial of dimensions 150Å × 200Å and height 50 meV.

The evanescent waves will not contribute to the current since

they are real functions. Hence, for a given length l away from

the scattering center we define

T̃nm(l) =
t̃2nm exp (−2Kxml)

a2n
, (18)

as the transmission coefficient for the evanescent mode m. In

a similar manner, we can determine the reflection coefficients

Rnk and R̃nk for the propagating and evanescent reflected

modes respectively. The conservation of probability current

requires that ∑
m

k≥nπ/w

(
Tnm +Rnm

)
= 1. (19)

As a prototypical example, we consider a 2D GaAs waveg-

uide of width 300Å. For this waveguide, the subband minima

are given by, Ey,1 = 6.24 meV, Ey,2 = 24.95 meV, Ey,3 =

56.14 meV, Ey,4 = 99.80 meV and Ey,5 = 155.94 meV. As a

first example, we consider scattering of the conduction elec-

trons through a single rectangular potential of dimensions

150Å × 200Å and height 50 meV. We consider an incoming

wave coming with mode n = 2. In Fig. 6, we plot T22 and R22

coefficients as a function of energy. We see that the trans-

mission (reflection) probability slowly increases (decreases)

and reaches a resonance. In Fig. 7, we observe that the

evanescent states associated with the mode 4 slowly increases

and reaches a maximum at Ey,4.(6) Evanescent modes con-

tribute fairly symmetrically for both transmitted and re-

flected waves.

Our analysis can be easily extended to study multiple

scattering problems. We consider a system of three circu-

lar holes of radius 30Å aligned vertically at x = 0. We

consider that within each hole, we have a constant poten-

tial, V0 = −50 meV. In Fig. 8, we see that the transmission
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Fig. 7: The transmission (T̃24) and reflection (R̃24) coef-

ficients are shown as a function of energy for the evanes-

cent waves associated with mode n = 4, with an incom-

ing wave from the mode n = 2 at a distance l = 50Å,

for scattering through a rectangular potential of dimen-

sions 150Å × 200Å and height 50 meV. We observe that

the amplitude will reach a maximum at the 4th subband

minimum with energy Ey,4 = 99.80 meV.

Fig. 8: The transmission (T11) and reflection (R11) coef-

ficients are shown as a function of energy for the prop-

agating mode n = 1, with an incoming wave from

the same mode for scattering through vertically aligned

three circular holes of radius 30Å whose centers are 100Å

apart, and depth −50 meV.

and reflection coefficients exhibit well known Fano profiles.(7)

More intriguing is that even the evanescent modes reveal a

similar Fano profile due to coupling between bound states of

the holes with scattered evanescent states (see Fig. 9).

6. Conclusions

A typical text-book treatment of scattering involves an

incoming prepared state from x = −∞, and cross-sections

are obtained by applying BCs in the asymptotic limit. In

finite, nano-scale systems it is necessary to obtain solutions

Fig. 9: The transmission (T̃15) and reflection (R̃15) coef-

ficients are shown as a function of energy for the evanes-

cent mode n = 5, with an incoming wave from the mode

1 at a distance l = 50Å, for scattering through vertically

aligned three circular holes of radius 30Å whose centers

are 100Å apart, and depth −50 meV.

within a few wavelengths away from the scattering center.

Using the stealth elements, we have redefined the quantum

scattering problem with “sources and absorbers.” In sum-

mery, we have shown that

1. the quantum scattering can be brought into the varia-

tional framework using the action integral formalism.

2. the use of stealth elements reduces the Cauchy BCs

to simpler Dirichlet BCs at the periphery. In this way

we substantially reduce the computational complexity.

The parameter, α, is varied smoothly in the stealth

region as a function of coordinates r for each energy

E to ensure no reflection at the stealth interface.

3. Schrödinger equation with a source term provides a

way of designing a carrier antenna in the active re-

gion which inject the plane waves of a specified energy

and amplitude while the active region is enclosed by

absorbers.

4. the FEA provides a natural way of handling geomet-

rically complex potentials and multiple scattering in

any dimension.

In confined geometries, the total wavefunction obtained through

our analysis includes the contribution from evanescent modes.

In 2D or 3D open domains, the stealth elements are placed

around the scattering center in all directions and the source is

located in the active region. Our calculations are in progress.
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Fig. 10: We have shown the transmission and reflection

at the stealth region interface. Here, kI and kII are

the corresponding wavevectors in the regions I and II,

respectively. Here, a, r and t are the incident, reflected

and transmitted amplitudes, respectively.

Appendix A: No reflection condition at the stealth

interface

We need to ensure that there is no reflection from a wave

incident on the stealth interface. Let us consider that in 1D

we have a stealth interface at x = 0. In region I, (x < 0) we

have an incoming wave of an amplitude a and energy E that

emerged from a source at x = −∞. The region II, (x > 0)

is filled with stealth finite elements. In general there will be

both reflection and transmission at any interface. To begin

with we consider a uniform stealth region. Let the electron

effective mass in region II be given by m = m∗(1 + i α),

where m∗ is the mass of an incoming particle in region I and

α is the constant absorption parameter. From Fig. 10, we

see that the wavefunctions on either side are given by

ψI(x) = aeikIx + re−kIx, x < 0;

ψII(x) = teikIIx, x > 0, (20)

where the wavevector kI =
√

2m∗E/~2, and kII is as yet

undetermined. The differential wave equation satisfied by

these two wavefunctions are given by

d2

dx2
ψI(x) + k2IψI(x) = 0, x < 0;

d

dx

m∗

m
ψII(x) + k2IβψII(x) = 0, x > 0, (21)

where, the parameter β is fixed later through the no reflec-

tion condition. Continuity of the wavefunction at the inter-

face x = 0 requires that

a+ r = t. (22)

The probability current continuity demands that the ‘mass-

derivative’ of the wavefunction be continuous.(8) Hence, we

have the condition

i
kI
m∗

(a− r) = i
kII
m
t. (23)

From Eq. (22) and (23), the reflection coefficient is given by

r = a

(
kIm− kIIm∗

kIm+ kIIm∗

)
, (24)

and the no reflection condition is

kII =
m

m∗
kI = (1 + iα) kI . (25)

Substituting Eq. (20) in Eq. (21), we obtain the dispersion

relation of the form

−m
∗

m
k2II + βk2I = 0. (26)

Hence we obtain, β = (1 + iα). In practice, we consider the

absorption parameter α to increase smoothly over the stealth

region. Therefore, the wave equation in the stealth region is

given by

− ~2

2m∗
d

dx

(
1

(1 + iα(x))

d

dx
ψ(x)

)
− E(1 + iα(x))ψ(x) = 0,

(27)

with solutions of the form

ψ(x) ∼ exp

(
±ikIx− kI

∫ ±x
0

dx′α(x′)

)
. (28)

Thus there are no sharp interfaces or jump conditions any-

where to generate any reflections. We see that the solutions

are highly damped which allows us to put Dirichlet BCs at

the boundaries of stealth regions. The probability current

continuity requires that the absorption function α(x) be a

smooth function. In this paper, we choose α(x) to be cu-

bic Hermite interpolation polynomials which vary from 0 to

αmax within the stealth region. The width of the stealth

region and αmax are optimized in such a way that the sum

of reflection (R) and transmission (T ) coefficients is closest

to 1 up to a desired accuracy. In the absence of a scatterer,

this procedure determines these parameters in a convenient

manner.
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