ため池決壊時における浸水シミュレーション

FLOOD ANALYSIS AT STORAGE RESERVOIR BREAK

久保 栞¹⁾,和田 光真²⁾,吉田 秀典³⁾

Shiori KUBO, Mitsumasa WADA and Hidenori YOSHIDA

1) 香川大学大学院工学研究科	(〒761-0396	高松市林町2217-20,	E-mail: s16G412@stu.kagawa-u.ac.jp)
2) 香川大学大学院工学研究科	$(\mp 761-0396)$	高松市林町 2217-20,	E-mail: s15D401@stu.kagawa-u.ac.jp)
3) 香川大学工学部	(〒 761-0396	高松市林町 2217-20,	E-mail: yoshida@eng.kagawa-u.ac.jp)

The tsunami accompanied by the 2011 Tohoku-Pacific Earthquake brought about serious damages. Though the damages by storage reservoirs are hard to spot rather than those by the tsunami, 8 dead men and 124 damaged homes were caused by the break of the Fujinuma storage reservoir in Sukagawa city, Fukushima. As there is a high possibility of the occurrence of great earthquake occurred in the Nankai Trough, the hazard maps relevant to 57 storage reservoirs are prepared by Takamatsu city through the flood analyses for the storage reservoirs in Takamatsu city so as to reduce the damages of a storage reservoir break. However, it is difficult to evacuate appropriately since only the maximum flood height and difficulty in walking are identified in the hazard map. Therefore, in this study, the flood analysis at a storage reservoir break is conducted to grasp the inundated area and flood height for any time. In result, the flood area is more or less similar to the hazard map prepared by Takamatsu city. Alternatively, the hitting time of outflow water and maximum flood height are grasped from the analysis though they are locally different from those listed in the hazard map. Moreover, the analysis suggests that the temporary evacuation to second floor or rooftop of a house is more effective than that to an evacuation site just after the occurrence of great earthquake in the area near storage reservoirs, and that the evacuation site after the confirmation of stop of flooding is desirable. Key Words: Storage Reservoir, Flood Analysis, OpenFOAM

1. はじめに

わが国は地震多発国で、これまでに多くの地震被害を経 験している.2011年3月に発生した東北地方太平洋沖地震 では死者、行方不明者が2万人にも及ぶ甚大な被害となっ た.このうち、大半を占めているのが津波による被害である が、地震によってため池が決壊し、発生した内陸津波による 大きな被害ももたらされている.東北地方太平洋沖地震で被 害を受けたため池は2,000ヶ所を超えており、最も被害の大 きい福島県須賀川市江花にある藤沼貯水池ではほぼ満水の 約1,500,000m³の水が流出した.氾濫水が下流の居住地区を 襲った結果、死者8名、家屋被害124戸という被害が発生し た⁽¹⁾.津波は発生から陸を遡上するまでにある程度の時間 を要するが、ため池の場合、決壊と同時に水が押し寄せてく るため、地震発生後、津波よりも水が押し寄せてくるまでの 時間が圧倒的に短い.

近年では, 東海・東南海・南海地震が同時に発生する可能 性が高くなっている. 南海トラフ巨大地震が発生した場合, 香川県全域で震度6弱,高松市中心部では震度6強と予想さ れており、これまでに経験したことのない揺れに見舞われる 可能性がある.南海トラフ巨大地震による強い揺れや長周期 地震動に伴う液状化によってため池が決壊した場合、県土の 総面積に対するため池密度が日本最大である香川県では大 きな被害がもたらされる可能性がある.これを受けて高松市 は、貯水量が100,000m³以上の大規模ため池と高松市東部地 区にある中規模ため池,計57ヶ所についてため池の堤体決 壊を想定した氾濫解析を行い、それを基にハザードマップを 作成している⁽²⁾.しかし、このハザードマップには、最大 浸水深とその時点における歩行困難度しか記載されていない ため、適切な避難行動を取ることができない.本来は、ある 任意の地点における水の到達時刻や水の勢いが治まる時刻を 把握する必要がある.また,巨大地震発生時においては,建

²⁰¹⁶年9月17日受付, 2016年10月27日受理

物の倒壊・損傷や液状化などによる道路閉塞も生じる可能性 があるため、わずかな浸水であってもあらかじめ検討してい た避難経路が使用できない場合がある. そこで, ため池付近 における地震発生後の適切な避難方法を検討するためには, 複数の災害を考慮した避難行動シミュレーションを実施する ことが望まれる.地震による被害状況を考慮した避難行動シ ミュレーションの研究として,藤田らは統合地震シミュレー タ (Integrated Earthquake Simulator, IES) を用いて地震発 生時における建物被害を考慮した避難行動シミュレーション を行っている⁽³⁾. 避難行動シミュレーションを行うにあたっ て、あらかじめ GIS などのデジタルデータを基に都市モデル を構築し、その仮想都市において構造物応答解析を行ってい る. 解析において建物の層間変形角がある一定値を超えた場 合にその建物の周辺の道路が通行不可能となるような条件を 設定し、その結果を避難行動シミュレーションに反映させる ことで,被害の有無や被害状況の違いによって生じる避難行 動や避難時間の変化について検討している.しかし、地震発 生時には建物被害だけでなく、津波による浸水被害や、液状 化などさまざまな災害が同時に発生するため、これら複数の 災害を考慮する必要がある. そこで、本研究では複数の災害 を考慮した避難行動シミュレーションを実施する予定である が、災害の1つであるため池の決壊に着目し、ため池決壊時 の浸水シミュレーションを行い、得られた浸水状況の妥当性 を検証するために高松市ため池ハザードマップと比較する.

2. 基礎理論の概要

本研究では、3次元流体力学ツールのOpenFOAM⁽⁴⁾を用 いて、ため池決壊時の浸水シミュレーションを行う.用いるソ ルバーは混相流解析が可能な interFoam である.interFoam は、界面捕獲法における解析手法のうち、VOF(Volume Of Fluid)法を採用している2相流ソルバーであり、非圧縮性・ 非定常・等温の流体を対象としている.interFoamの基礎方 程式は以下の Navier-Stokes 方程式、連続式、そして移流方 程式である.

$$\rho \frac{\partial \boldsymbol{v}}{\partial t} + \rho \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\nabla p + \mu \nabla^2 \boldsymbol{v} + \rho \boldsymbol{F}$$
(1)

$$\nabla \cdot \boldsymbol{v} = 0 \tag{2}$$

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \boldsymbol{v}) = 0 \tag{3}$$

ここで、 ρ は密度、vは流速ベクトル、pは圧力、 μ は粘性係数、Fは外力ベクトル、tは時間、そして α は液相の体積分率である。 α が0のときは気相のみを、1の時は液相のみを示す。なお、密度 ρ と粘性係数 μ 、動粘性係数 ν は以下のように表される。このとき、液相、気相に関する密度と粘性係数、動粘性係数はそれぞれ ρ_l 、 ρ_g 、 μ_l 、 μ_g 、 $\frac{\mu_l}{\rho_l}$ 、 $\frac{\mu_g}{\rho_g}$ である。

$$\rho = \alpha \rho_l + (1 - \alpha) \rho_g \tag{4}$$

$$\mu = \alpha \mu_l + (1 - \alpha) \mu_g \tag{5}$$

$$\nu = \alpha \nu_l + (1 - \alpha) \nu_g \tag{6}$$

また, Navier-Stokes 方程式において, 右辺第3項の外力 項を表面張力項 **F**_s と重力項**g** に分けると次式のように表さ れる.

$$\rho \frac{\partial \boldsymbol{v}}{\partial t} + \rho \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\nabla p + \mu \nabla^2 \boldsymbol{v} + \rho \boldsymbol{F}_s + \rho \boldsymbol{g}$$
(7)

表面張力は Brackbill らが提案した CSF (Continuum Surface Force) モデル⁽⁵⁾ によって表されるため,次式のようになる.

$$\boldsymbol{F}_s = \sigma \kappa \boldsymbol{n} \tag{8}$$

このとき、 σ は表面張力係数、 κ は界面の曲率、そしてnは注 目セル周囲の流体率の勾配である界面の法線ベクトルである. なお、界面の曲率は界面の法線ベクトルの発散で、 $\kappa = -\nabla$ $\cdot n$ と表される.さらに、同式右辺第2項の粘性項 $\nu\nabla^2 v$ は、 粘性応力テンソル $\tau = \mu\nabla v$ を用いて $\frac{1}{\rho}\nabla\tau$ と表すことがで きる.以上より、本研究で使用する Navier-Stokes 方程式は 以下のようになる.

$$\rho \frac{\partial \boldsymbol{v}}{\partial t} + \rho \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\nabla p + \nabla \tau + \rho \boldsymbol{F}_s + \rho \boldsymbol{g}$$
(9)

本解析では、液相と気相の2相を扱うため、それぞれの領域に対する移流方程式を立てる.このとき、液相と気相における流速をそれぞれ v_l 、 v_g とする.

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \boldsymbol{v}_l) = 0 \tag{10}$$

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot \left((1 - \alpha) \boldsymbol{v}_g \right) = 0 \tag{11}$$

以上より、流速 v を次式と再定義する.

$$\boldsymbol{v} = \alpha \boldsymbol{v}_l + (1 - \alpha) \boldsymbol{v}_g \tag{12}$$

式(10),(11),(12)より,液相と気相の流速の差を相対速 度 **v**_cとすると,移流方程式は式(13)となる.

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \boldsymbol{v}) + \nabla \cdot ((1 - \alpha)\alpha \boldsymbol{v}_c) = 0$$
(13)

また、圧力と速度の算出には、Navier-Stokes 方程式と連続 式を用いて行うが、非圧縮性流体を扱うことから、本研究で は PIMPLE 法を用いることとする. PIMPLE 法は、SIMPLE 法 (Semi-Implicit Method for Pressure-Linked Equation) と PISO 法 (Pressure-Implicit with Splitting of Operators) を 組み合わせた手法である. SIMPLE 法は、圧力と速度の初 期値から予測値をそれぞれ算出し、両者が収束するまで補正 する手法である. 一方、PISO 法は、SIMPLE 法と同様の補 正を行った後、再度圧力と速度の補正を行い、予測値が収束 するまで再度補正を行う手法である ^(6,7). PIMPLE 法は、 PISO 法の時間ステップの間に SIMPLE 法のループを入れた ものである. つまり、一度 PISO 法によって速度と圧力を求 めたのち、それまでの手順を残差が小さくなるまで、再度同 過程を踏むということである.

なお、空間離散化には有限体積法を用い、時間項には1次 精度前進差分法、対流項には2次精度TVD(Total Variation Diminishing)法、非定常項には2次精度風上差分法、その 他の項には線形補間を採用する^(6,7).

3. ため池決壊時の浸水解析

3.1. 解析対象エリアと解析メッシュ

本研究において対象とするため池は高松市中部に位置する 平池である.平池は、貯水量1,240,000m³と非常に大きいた め池である.築造は1178年とされており、その後、災害や 改修の結果,400年程前に現在地に移ったとされている.近 年では、1967年から2年間にわたって全面改修が行われて いるが、それ以降、改修は行われていない.

本研究では、Fig.1 に示す高松市ため池ハザードマップを 参考に解析領域を決定する.ここで、ため池堤体付近を解析 領域に含めると、平池の右手(東側)にある前池に大半の水 が流入することが考えられる.実際にはそのような結果にな るかもしれないが、本研究では平池北側に散在する住宅地に 焦点を置いていることから、前池を含まないように、Fig1 に示すような、南北 1222m× 東西 1477m の領域を解析対象 とした.ため池の水の流出は、この領域の南側面から生ずる ことになるが、高松市ため池ハザードマップでは、堤体のう ちの300mが決壊したと想定していることから本研究でもこ れにならった.ただし,ハザードマップではこの300m区間 がどこであるかを明示していない. そこで本解析では,解析 領域の南側面において、高松市ため池ハザードマップにおい て、最大浸水深が周囲よりも大きな値を示す東西 300m 区間 に、氾濫水の流出エリアを設定した. 解析エリアの南部は田 畑が多く住宅は少ないが、東・北東部は住宅の多いエリアと なっている.なお、南部から北部にかけて約5m下がる緩や かな傾斜面となっていることから、平池決壊時には北部へ流 出することが予想される.

解析領域の下面となる地表面については,国土地理院が 提供する 5m 間隔の数値標高データを採用する^(8,9),本解 析では,1メッシュにおける液相の体積率であるα値を基に 浸水深を判定するため,メッシュ高さを予想される浸水深よ

Fig. 1 Hazard map produced by Takamatsu city ⁽²⁾

Fig. 2 Analysis area

Table 1 Analysis conditions

液 相	動粘性係数 $ u_l(\mathrm{m}^2/\mathrm{s})$	1.00×10^{-6}	
112.11	密度 $ ho_l({ m kg/m^3})$	1.00×10^3	
复相	動粘性係数 $ u_g(\mathrm{m}^2/\mathrm{s})$	1.48×10^{-5}	
×(1)	密度 $ ho_g({ m kg/m^3})$	1.00	
表面張力係数 $\sigma(kg/s^2)$	0.07		
重力加速度 $g(m/s^2)$	9.81		
乱流・層流モデル	laminar		

りも高い,数値標高データと同じ間隔である5mとした.し たがって,メッシュは概ね5m×5m×5mの立体メッシュとし た.なお,メッシュの大きさを半分にし,簡易的に浸水解析 を行ったが,その際の浸水深は5mの場合と概ね一致してい たため,本解析ではこのメッシュサイズを採用する.本解析 では,上述した地表面(下面)と上面を有するような3次元 の解析領域を用意して解析を行う.そのため,解析領域にお いて,標高が最も高いところでT.P.45m程度で,ため池の 水を高さ11mとすることから,解析領域の上面をT.P.60m とした.さらに,本解析において対象とする液相,気相に関 する諸条件や使用するモデルについては,Table1に示す.

3.2. 境界条件

各側面の境界条件については,数値標高モデルを反映させた下面は非流出境界面,上面は大気側境界面,そして4側面は流出境界面とする.

また,流出水の量は,ため池の貯水率が比較的高い5月~ 9月における平池の平均貯水量が約80%であることから⁽¹⁰⁾, 本解析においても貯水量の約80%である990,000m³とし,南 北300m×東西300mの領域にそれと同面積で高さが11m分 の水をFig2に示す inflow area から一気に溢れるダムブレイ ク方式で解析領域に流入させる⁽¹¹⁾.

3.3. 解析結果および考察

本研究では、平池決壊後、任意の時刻・地点における浸水 領域を把握するため、決壊から 30 秒、60 秒、90 秒、120 秒 後の浸水状況を Fig3~ Fig6 に示す.浸水の有無については、 液相の体積率である α 値を基に判断する. なお、水を平池 よりも北側に設定していることや、水の初期高さを 11m と していることから、浸水深や浸水域等は、ハザードマップに 示されたものと完全に合致する訳ではないが、本解析は、任 意の時刻における浸水域や浸水深を把握することを目的と

Fig. 3 Condition in flood (Time=30s)

Fig. 4 Condition in flood (Time=60s)

しているため、その一例として以下に考察を述べる. Fig3 より、決壊直後は水に最も勢いがあることから決壊からわず か 30 秒で、北方向へ 400m 程度浸水域が広がっていること がわかる.また、その後は時間経過と共に北へ進むのではな く、徐々に東へ逸れながら浸水域を拡大させていることがわ かる (Fig.4, Fig.5). これは、決壊箇所から西側の標高が約 40m であるのに対し、東側の標高が35mと、西から東へ勾 配が下がっているためである. また, Fig.5, Fig.6 からわか るように、決壊後、ため池から流出した水が浸水域が扇状に 広がるのではなく、北へ進んでから徐々に東へ広がっている のは,決壊箇所の南東側に小さな山があり,この周辺の標高 が高くなっていることに起因している.こうしたことから, 浸水域は真東や西側へは広がらず,当初は北へ,その後徐々 に北東へ広がっている. なお, 解析領域には含まれていない が,解析エリアの南側に位置し,東西を山に囲まれている仏 生山小学校は、高松市ため池ハザードマップでは浸水しない とされている.これは、解析領域南東部における標高が40m 以下であるのに対して、仏生山小学校付近の標高は41~43m となっており,解析領域南東部よりも比較的標高の高いエリ アとなっているためである. そのため, 平池から北側へ流出 した際にも, 仏生山小学校付近まで水が到達しないと予測 される. さらに, 120 秒を超えると, 浸水しているエリアの うち,α値が0.5以下となる部分が大半となり、ため池から 流出した水が広域に拡散していることがわかる(Fig.6).こ こで, 高松市ため池ハザードマップ (Fig.1) において, 浸水 深が 0.5m 以上であるエリアと、本解析結果においてα 値が

Fig. 5 Condition in flood (Time=90s)

Fig. 6 Condition in flood (Time=120s)

0.1以上の領域を比較すると、どちらも北東へ浸水が広がっ ていることや、高松市ため池ハザードマップにおける浸水深 の分布とα値の分布から、両者の浸水状況が類似しているこ とがわかる.

次に,任意の地点における決壊から120秒後までの浸水 状況としてα値の推移を示す.本研究では,高松市ため池ハ ザードマップにおいて水深が1.0~2.0mと推定されているエ リアのうち,住宅の密集している地点(Fig1●印,以降地点 Aとする)と,同マップにおいて水深が0.5m~1mと推定さ れている,仏生山コミュニティセンターから西へ150m進ん だ地点(Fig1▲印,以降地点Bとする)におけるα値を示 す.Fig7に,これら2地点における10秒ごとのα値を示す.

決壊から 120 秒経過するまでの α 値の平均は地点 A で 0.41, 地点 B で 0.11 となった.また, α 値が最も大きくなっ たのはどちらも決壊から 60 秒の時点で,その際の α 値は地 点 A で 0.59, 地点 B で 0.19 となった.

本研究では、メッシュをすべて5m間隔で作成していることから、各地点におけるα値に5mをかけた値をそのエリアにおける浸水深として考える.地点Aでは、α値が最大で0.59であることから、浸水深は約3.0mとなる.さらに、地点Bも同様に考えると浸水深は約1.0mとなる.高松市ため池ハザードマップにおいて、地点Aの最大浸水深は1.0~2.0m、地点Bの最大浸水深は0.5~1.0mの間の値をとっているが、解析においても、地点Bについてはほぼ同様の浸水深が得られている.他方で、地点Aは、高松市ため池ハザードマップよりも1.0m深い浸水深となった.ため池が決壊し

Fig. 7 Time v.s. α at pointA and pointB

Fig. 8 Water depth at a point A (Time=30s)

340m

た際に流出する水を、本来のため池堤体付近ではなく、地点 Aに近い解析領域の流入境界に設けたことで、地点Aに到 達するまでは水の拡散が顕著ではなく、到達する水の量が多 くなるため、上述のようになった.

最後に、地点 A を南北方向に縦断する断面における浸水深 を Fig8~ Fig.12 に示す. これらの図は、決壊から 30 秒,60 秒,90 秒,120 秒,150 秒後の地点 A を含む南北 340m 区間 の断面図である.図においては左が南側、右が北側となり、 地点 A は図中の矢印で示す場所に該当する.なお、断面図 において α 値が 0.5 以上であるところ(図内白線)までを完 全に浸水していると仮定する⁽¹²⁾.地点 A における浸水深 は決壊から 30 秒後に約 2.0m,60 秒後に約 3.0m,90 秒後に 約 2.5m,120 秒後に約 1.0m である.また,決壊から150 秒 後における α 値は 0.5 を超えていないため、150 秒後はほと んど浸水がないと考えられるが、 α 値が 0.1 となっているこ

Fig. 12 Water depth at a point A (Time=150s)

とから,浸水深は0.5m程度となる.一般的に浸水深が0.5m である場合は,大人は膝程度まで浸水していると考えられ る⁽¹³⁾.また、同地点での各時刻における流速は北方向に、 それぞれ1.42m/s, 1.43m/s, 0.82m/s, 0.65m/s, 0.58m/sと なった.解析では、決壊から60秒~90秒の間では高松市た め池ハザードマップに記されている浸水深の1.0m~ 2.0m よ りも大きな値を示している.浸水深が2.0m~3.0mとなると、 2 階の床,もしくは 2 階の軒下付近まで浸水するため⁽¹⁴⁾, 非常に危険である.このとき、浸水深が3.0mとなるのは、決 壊からわずか60秒後でとなっているため、平池に近い地点 Aにおいては、地震発生直後、平池決壊の恐れがある場合、 地震が治まったと同時に遠くの避難場所へ避難するのではな く,一時的に自宅の2階や屋根の上にて氾濫水が治まるまで 待機した方が良い場合もある.しかし、水深が2.0m以上と なる場合,建物が倒壊する恐れが非常に高まるため⁽¹⁵⁾,建 物が倒壊した場合に備え、ライフジャケットなど、水に浮く ものを用意しておく必要があろう.また、決壊から90秒後 と150秒後の水深を比較すると、わずか60秒で浸水深は約 2.0m 低下し, 0.5m 程度となっているが, この時点でも安易 に避難行動を始めるべきではない. 国土交通省水管理・国土 保全局の資料⁽¹⁶⁾によると,水深が0.5m以上である場合は 車が浮き,決壊から150秒間でさまざまな場所へ押し流さ れている可能性がある.そのため、押し流された車が避難行 動の妨げになる場合がある. さらに, 避難にあたっては, 水 深だけでなく避難者の身長や水の流速も考える必要がある. 避難が困難になるのは、成人男性は0.7m、成人女性は0.5m、 子供は0.2m以上の浸水がある場合というデータがある⁽¹⁷⁾. そのため、水深が 1.0m 以上となる決壊から 30 秒~120 秒の 間は避難が困難であるのは明白であるが、水深が 0.5m 程度 まで下がる150秒後の時点でも、大人の膝までつかる程度の 水深⁽¹³⁾であることから、女性や子供は避難時に特に危険が 伴う.これに加え、浸水深が0.1m程度であってもマンホー ルや用水路等の位置がわからず転落する恐れがある⁽¹⁸⁾.こ のように、車が浮く可能性があることや、流速が 0.58m/s で あることをふまえると,男性であっても,この時点で避難場

所へ移動することは危険である.したがって,決壊から150 秒以上経過し,周囲に浸水がないことを確認してから避難を 開始することが望まれる.

4. 結言

巨大地震によるため池の決壊から人命を守るには任意時 刻における浸水域や浸水深等を知ることが重要であるが,高 松市ため池ハザードマップでは任意の地点における最大浸水 深のみをプロットしていることから,任意の時刻における浸 水域や浸水深はわからない. そのため, 浸水シミュレーショ ンによって、これらを把握する必要があろう.本研究では、 OpenFOAM によって香川県高松市のほぼ中央に位置する平 池を解析対象とし、この池の決壊の浸水シミュレーションを 行った.その際の浸水状況を一定時刻ごとに可視化し、その 際の浸水域や浸水深について検討した.また,その結果の妥 当性を検討するために高松市ため池ハザードマップとの比較 を行った.シミュレーションの結果,流入条件が異なるにも 関わらず、浸水域は高松市ため池ハザードマップと類似して いる. 解析において特筆すべき点は、その最大浸水深となる のはため池決壊からどの程度経過した時点であるか把握する ことができたことである.ため池の決壊による浸水は津波と 異なり、地震発生から浸水が始まるまでの避難行動に割ける 時間が非常に短いにもかかわらず、短時間で浸水深が3.0m 上昇する可能性があるということも判明した. そのため、た め池付近の住民は巨大地震等の発生により,ため池が決壊す る恐れがあると判断した場合には, 避難場所へ避難するので はなく、浸水に備えて自宅の2階もしくは屋根の上など、地 上から 3.0~ 4.0m 以上の場所へ一時的に避難するということ も視野に入れるべきであろう.他方で、水位が大幅に低下し た場合であっても、水深や流速によっては歩行が困難となる 場合もあるため,完全に水が引いてから避難場所へ避難する ことが適当であるという知見も得た.しかしながら、本研究 では、構造物や田畑等の影響を反映していない.実際には、 構造物等があると,波が構造物に衝突する等によって水の進 行速度が異なる可能性があるため、それらの反映を行う必要 がある. 今後は、本解析結果を基に、ため池の決壊によって 浸水が起きた状況下での避難行動シミュレーションを実施す るとともに、構造物の倒壊や損傷による道路閉塞が生ずる可 能性があることから、こうした複数の障害が避難行動に与え る影響についても検討する予定である.

参考文献

- (1) 渡辺健,渡邊浩樹:藤沼ダムの決壊原因と復旧方針について,農業農村工学会 技術リポート, pp.1-2, 2015
- (2) 高松市ため池ハザードマップ ため池別作成図面一覧 (平池) 浸水想定区域図 http://www.city.takamatsu. kagawa.jp/sangyou/toti/hazardmap-top.html(平成 28 年現在閲覧可)
- (3) 藤田零,吉田秀典,堀宗朗, M.M.L.Wijerathne:地震に よる建物被害を考慮した避難行動シミュレーション,土

木学会論文集 A2(応用力学), Vol.71, No.2(応用力学 論文集 Vol.18), pp.I_643-I_654, 2015

- (4) OpenFOAM Foundation : OpenFOAM User Guide 2.3 Breaking of a dam, http://www.openfoam.org/docs/ user/(平成 28 年現在閲覧可)
- (5) Brackbill, J. U., D. B. Kotrhe and C. Zemach: A Continuum Method for Modeling Surface Tension, J. Comp. Phys, Vol.100, pp.335-354, 1992.
- (6) 清水義也:半導体洗浄機モデル内流れに関する研究,岡山大学大学院,博士論文,107p,2015
- (7) 上浦鉄平:肥型船船首まわりの渦流れに伴う流体現象のCFDシミュレーション、日本船舶海洋工学会論文集、 Vol.19, pp.9-18, 2014
- (8) 川本治,鈴木尚登,福原正斗,吉迫宏,井上敬資,鈴木智 広:ため池決壊時の簡易氾濫解析の改善に関して,H25 農業農村工学会全国大会講演会講演要旨集,pp.360-361, 2013
- (9)小嶋創,向後雄二,島田清,正田大輔,鈴木尚登:ため 池決壊を想定した氾濫解析における地形標高データ解 像度の影響,H26農業農村工学会大会講演会講演要旨 集,pp.806-807,2014
- (10) 香川県水資源対策課:降雨および貯水率の状況, http://www.pref.kagawa.lg.jp/content/etc/subsite/ mizu/index.shtml(平成28年現在閲覧可)
- (11) 川崎浩司,松浦翔,坂谷太基:3次元数値流体力学ツール OpenFOAM による自由表面解析手法の妥当性に関する検討,土木学会論文集 B3(海洋開発), Vol.69, No.2, L-748-L-753, 2013
- (12) Christian Kunkelmann: Numerical Modeling and Investigation of Boiling Phenomena, Darmstadt University of Technology, Ph.D. Thesis, 122p, 2011
- (13) 国土交通省水管理・国土保全局下水道部:内水浸水想定
 区域図作成の手引き, pp.11-12, 2015
- (14) 国土交通省中部地方整備局:安全で確実な避難の確保,
 p.83, 2013
- (15) 国土交通省水管理・国土保全局河川環境課水防企画室: 浸水想定区域図作成マニュアル(改訂版), p.27, 2014
- (16) 国土交通省 水管理・国土保全局河川環境課水防企画 室:洪水ハザードマップ作成の手引き(改訂版), p.36, 2015
- (17) 西原巧:洪水災害時における地域避難システムの設計 と評価(1),水利科学, No.147, pp.12-21, 1982
- (18)内閣府:大雨災害における避難のあり方検討会報告書,
 p.11,2010