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In this paper, a contour integral-based approach, so-called the block Sakurai-Sugiura (SS)

method is applied to solve nonlinear eigenvalue problems formulated by the boundary el-

ement method (BEM) for 2D time-harmonic elastic vibration problems. The original

eigenspace is limited to a smaller eigenspace by employing a contour integral along a

Jordan curve on the complex plane. The eigenfrequencies within the Jordan curve are

extracted by solving a linear eigenvalue problem formed by two Hankel matrices whose

dimensions are extraordinary smaller than the original system matrix. Furthermore, with

a small number of boundary elements, BEM yields results with high accuracy. The com-

parisons between the numerical results obtained by FEM and BEM for a test eigenvalue

problem are presented here to demonstrate the correctness and effectivity of proposed

approach.
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1. Introduction

Unlike finite element method (FEM) (1) that gives a sparse

banded coefficient matrix, boundary element method (BEM)
(2) provides a full nonsymmetric coefficient matrix A. How-

ever, the boundary-only discretization makes the numerical

model simpler. Furthermore, in general, since there is no do-

main interpolation, the solutions obtained by BEM with a

certain size of element may be more accurate. For eigenvalue

analysis, the direct search method (3), which determines the

eigenvalues by drawing a profile of det[A(ω)], can be re-

garded as a pioneer application of BEM to extract eigenval-

ues ω or f , where ω = 2πf , is the circular frequency. The

repeated computation det[A(ω)] with respect to ω with its

incremental variation leads to a high computing cost. More-

over, it is very difficult to extract multiple eigenvalues or

eigenvalues that are close to each other. Also researchers

have developed some transform methods such as internal

cell method (4), dual reciprocity method (5) and multiple

reciprocity method (6).

The emergence of the contour integral method (7, 8) en-

ables to extract the eigenvalue by using boundary element

method without transform. In particular, the block Sakurai-

Sugiura (SS) method named after Sakurai and Sugiura is

proposed for nonlinear eigenvalue problem (9). By using the

block SS method, the investigation on eigenvalue problems

for 2D and 3D acoustic cavities is reported in the previous

research (10, 11).
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In this paper, eigenvalue problem of a 2D elastic struc-

ture which has a more complicated situation, is considered.

Elastic wave has both transverse and longitudinal polariza-

tions. The coupling of the transverse and longitudinal waves

may make eigenmodes complicated. For FEM models, the

internal discretization leads to inaccurate results when the

number of elements is insufficient and the eigenmodes are

complicated. However, BEM does not have any internal dis-

cretization, therefore, with the comparable size for boundary

discretization, more accurate results are obtained. A numer-

ical example computed by using both FEM software COM-

SOL and BEM, is presented. The comparison between FEM

and BEM models that have comparable size for boundary

discretization is carried out. The computing time of BEM

combined with the block SS method depends on many pa-

rameters for the block SS method, therefore, the discussion

about the computing time remains as a future topic.

2. Formulation

2.1. Analysis of nonlinear eigenvalue problem by the block

SS method

Recently, a contour integral method, so-called the SS method
(7), by which the size of a generalized eigenvalue problem is

converted into a rather smaller one by carrying out the con-

tour integral along a closed Jordan curve, is developed. The

reduced eigenspace is determined by the eigenvalues located

inside the Jordan curve. Degenerate eigenvalues resulted by

symmetry of structure and constraint can be extracted by



multi-initial nozero vectors. For nonlinear eigenvalue prob-

lem, the block SS method are derived starting from Smith

normal form, similarly, the eigenspace of the original problem

is reduced to the one of interest and the nonlinear property is

eliminated through solving a generalized eigenvalue problem

of a linear matrix pencil as follows

H<
Kl − λHKl = 0 (1)

where HKl and H<
Kl are Hankel matrices which have been

presented in (9) as follows

HKl =


M0 M1 · · · MK−1

M1 M2 · · · MK

...
...

. . .
...

MK−1 MK · · · M2K−2

 (2)

H<
Kl =


M1 M2 · · · MK

M2 M3 · · · MK+1

...
...

. . .
...

MK MK+1 · · · M2K−1

 (3)

where the moment matrices Mm are defined as as follows

Mm =
1

2πi

∮
P

UHA−1(z)Vzmdz, (4)

where (·)H denotes the conjugate transpose, A is the system

matrix of a nonlinear eigenvalue problem A(ω){x} = {0}, P
is a positively oriented closed Jordan curve on the complex

plane, z is defined on the complex plane with respect to

circular frequency ω, V is a 2N× l matrix formed by column

vectors v1, v2,..., vl ∈ C2N , and U = V. Obviously, the

number of eigenvalues which can be extracted is determined

by Kl (the dimension of the Hankel matrices).

The block SS method also provides the recovery of the

eigenvectors, let wj be the eigenvectors obtained by Eq. (1),

then the eigenvectors xj of original eigenvalue problem in

Eq. (16) can be obtained by

xj = Swj (5)

where S = [S0,S1, ...,SK ] and Sp is a intermediate result as

follows

Sp =
1

2πi

∮
P

zpA−1(z)Vdz (6)

where the contour integral is carried out by trapezoidal rule

numerically.

2.2. Boundary element method for elastodynamic problem

Considering an elastic wave propagating in a homogeneous

and isotropic medium without body force, the expression of

governing continuum equation by displacements is

(C2
1 − C2

2 )uj,jk(x, t) + C2
2uk,jj(x, t) = ük(x, t) (7)

where C1 and C2 are the P (longitudinal) wave speed and S

(transverse) wave speed respectively, written as,

C1 =

√
λ+ 2µ

ρ
=

√
E(1 − ν)

ρ(1 + ν)(1 − 2ν)
(8)

C2 =

√
µ

ρ
=

√
E

2ρ(1 + ν)
(9)

where ρ is the density of the medium, λ and µ are lamé

constants, E is the young’s modulus, and ν is the Poisson’

ratio.

For free vibration, no excitation is considered, hence dis-

placements can be written in a time-independent form:

ui(x, t) = Ui(x, ω)eiωt (10)

where i denotes the imaginary unit, ω = 2πf is the circular

frequency, and f is the frequency.

Substituting Eq. (10) to Eq. (7), we obtain the time-

independent form of governing equation as follows,

(C2
1 −C2

2 )Uj,jk(x, ω)+C2
2Uk,jj(x, ω)+ω2Uk(x, ω) = 0 (11)

The boundary integral equation corresponding to the above

boundary value problem is obtained as

ckl(y)Uk(y, ω) +

∫
Γ

t∗kl(x, y, ω)Uk(x, ω)dΓ(x)

−
∫

Γ

u∗
kl(x, y, ω)Tk(x, ω)dΓ(x) = 0 (12)

where ckl depends on the geometry of the boundary at point

y, the kernels u∗(x, y) and t∗(x, y) are known as displacement

and traction fundamental solutions which are given for two-

dimensional case by (2)

u∗
ij(x, y) =

1

απρC2
2

[ψδij − χr,ir,j ] (13)

where

ψ = K0

(
sr

C2

)
+
C2

sr

[
K1

(
sr

C2

)
− C2

C1
K1

(
sr

C1

)]
χ = K2

(
sr

C2

)
− C2

2

C2
1

K2

(
sr

C1

)
where s = iω, α = 2 for 2D case, and K0, K1, and K2 are the

modified Bessel function of order 0, 1, and 2, respectively.

Discretizing Eq. (12) with N piecewise constant boundary

elements, we obtain a linear equation as follows

ckl(y)U
i
k(y, ω) +

N∑
j=1

∫
Γj

t∗kl(x, y, ω)dΓ(x)U j
k(x, ω)

−
N∑

j=1

∫
Γj

u∗
kl(x, y, ω)dΓ(x)T j

k (x, ω) = 0 (14)

where ckl is 1/2 when the boundary is smooth, and U j
k(x, ω),

T j
k (x, ω) denote the k-direction displacement and traction of

the boundary element Γj .

Collecting Eq. (14) with source point y on each element,

then we obtain a 2N system equations as

B{U} = G{T} (15)

where B, G are 2N × 2N matrices, and vectors {U}, {T}
∈ C2N .

For free vibration of a structure, homogenous boundary

condition are usually given on the boundary of the structure.
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Fig. 1 The 2D elastic square structure.

Therefore, moving the unknowns to the left hand side, we

obtain a nonlinear eigenvalue problem with a zero vector in

right hand side

A(ω){x} = {0} (16)

where ω is implicitly involved in each element of A as an

eigenvalue parameter, and x is the unknown vector.

To solve the nonlinear eigenvalue problem in Eq. (16) for-

mulated by BEM, we have the difficulties on computing a

transcendental eigen equation of ω by using standard solver.

In this paper, we employ the block SS method to solve Eq.

(16).

3. Numerical example

Seeing Fig. 1, a 2D plane-strain square elastic structure

with edge length of 1[m] is constrained as depicted. We give a

fictitious material with density ρ̃ = 1.65×103[kg/m], Young’s

modulus E = 7.8 × 106[Pa], and Poisson’s ratio µ = 0.47.

The boundary is discretized into 80 constant boundary ele-

ments (BEs) as shown in Fig. 2, and the solid circles denote

the edge nodes of elements.

The contour integral path in Eq. (4) is taken as a circular

path: P = γ + ρeiθ (9), with γ = 500, ρ = 100 in a low fre-

quency range. In order to obtain accurate numerical results,

we follow the previous researches to specify the other param-

eters for the block SS method, which are set as follows: the

number of points for trapezoidal rule nt = 128 (11), the order

of Hankel matrices K = 4 and the number of initial nonzero

vectors l = 20 (8). We compute f = ω/2π in this paper.

The numerical results of ω located in the range [400, 600]

(for f , the solved range is [63.6620, 95.4930]) are obtained

and shown in Table 1 in which all the eigenvalues have rel-

atively small imaginary parts. The eigenvalues with small

imaginary parts are considered to be real eigenvalues and we

only concern about their real parts. The eigenfrequencies of

a FEM model with 1032192 finite elements (FEs) are repre-

sented by f∗
i which are considered as a benchmark for the

relative errors:

Rerror(fi) = |f
∗
i − Re[fi]

f∗
i

| × 100% (17)

In this paper, all the results of FEM are obtained by using

COMSOL with linear triangular elements.

Fig. 2 The mesh of the square structure with 80
uniform elements and 20 elements for each
edge (solid points denote the edge nodes
of elements).

Table 1 The obtained eigenfrequencies of the
elastic square structure by BEM with
80 elements.

i fi = ωi/2π [Hz] Rerror [%]

1 65.1034 − 7.8603 × 10−3i 4.2150 × 10−3

2 70.0517 + 5.2203 × 10−3i 2.1489 × 10−2

3 71.3134 + 9.7553 × 10−3i 3.5129 × 10−2

4 76.0215 + 4.3083 × 10−2i 1.9756 × 10−1

5 77.0927 + 4.0130 × 10−2i 2.1323 × 10−1

6 82.2306 − 2.3893 × 10−3i 1.7457 × 10−2

7 82.7139 + 4.4080 × 10−4i 6.2123 × 10−3

8 84.2805 − 2.8069 × 10−3i 1.0985 × 10−2

9 85.0675 + 1.9373 × 10−2i 3.4258 × 10−4

10 87.7443 + 7.9595 × 10−3i 4.8193 × 10−2

11 95.2639 − 1.0016 × 10−2i 9.0897 × 10−2

12 95.4605 + 6.1568 × 10−2i 2.0081 × 10−1

13 95.9628 + 5.9699 × 10−2i 3.1083 × 10−1

In Table 2 and Table 3, the results obtained by FEM us-

ing 426, 1708, 3882 FEs and BEM using 40, 80, 120 BEs are

presented, respectively. In particular, the results shown in

Table 3 have relatively small imaginary parts and Im(fi) 6
2.476×10−1. It is found that f8 is more accurate than other

eigenvalues in the results of FEM, because its eigenmode is

simpler than others as shown Fig. 6(b). In the results of

FEM with 426 FEs in Table 2, f8 is smaller than f5, f6 and

f7 because the eigemodes corresponding to f5, f6 and f7 are

more complicated and the insufficient number of elements for

domain discretization makes f5, f6 and f7 larger than closed

forms. With comparable size elements and same boundary

discretization, BEM extracts the eigenvalues with correct or-

ders. For simplicity, we just show the eigenmodes corre-

sponding to f1, f2, f7 and f8 in Figs. 3-6, where the circled

dots are the centers of BEs and denote the eigemodes with

respect to displacements, and in the eigenmodes obtained by

FEM, arrows denote the displacement vectors. Comparing

with the other eigenmodes, the eigenmodes corresponding to

f8 is more simple.



Table 2 The obtained eigenfrequencies fi of the
elastic square structure by FEM soft-
ware COMSOL with linear triangular
elements

i 426 FEs 1708 FEs 3882 FEs

1 68.4500 65.8880 65.4800
2 73.6108 70.9388 70.4495
3 76.2664 72.8448 71.9553
4 83.8080 77.9038 76.8102
5 86.0090 79.3315 77.9867
6 87.8337 83.4917 82.8676
7 89.4310 84.4002 83.5277
8 84.3991* 84.3018* 84.28491
9 92.8805 87.1983 86.0224
10 97.3564 90.5342 88.9014
11 105.4403 97.5653 96.3710
12 108.3386 99.1281 97.0055
13 110.9700 100.0873 97.6078

* The value of f8 obtained is more accurate than
other numerical results. This may have happened
due to its simpler eigenmode.

Table 3 The obtained eigenfrequencies fi of the
elastic square structure by BEM and the
block SS method

i 40 BEs 80 BEs 120 BEs

1 65.0896 65.1034 65.1037
2 70.0256 70.0517 70.0569
3 71.3845 71.3134 71.2983
4 76.3305 76.0215 75.9502
5 77.4252 77.0927 77.0140
6 82.1752 82.2306 82.2368
7 82.7055 82.7139 82.7137
8 84.2210 84.2805 84.2821
9 85.0806 85.0675 85.0637
10 87.8584 87.7443 87.7193
11 95.1914 95.2639 95.2661
12 96.0996 95.4605 95.3215
13 96.6268 95.9628 95.8166

(a)

(b)

Fig. 3 The eigenmode corresponding to f1 ob-
tained by BEM (a) and FEM (b).

(a)

(b)

Fig. 4 The eigenmode corresponding to f2 ob-
tained by BEM (a) and FEM (b).



(a)

(b)

Fig. 5 The eigenmode corresponding to f7 ob-
tained by BEM (a) and FEM (b).

(a)

(b)

Fig. 6 The eigenmode corresponding to f8 ob-
tained by BEM (a) and FEM (b).
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Fig. 7 The relative errors for f1 and f2 obtained
by FEM and BEM.
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Fig. 8 The relative errors for f7 and f8 obtained
by FEM and BEM.

The convergences of f1, f2, f7 and f8 provided by BEM

and FEM are shown in Figs. 7 and 8. We use same num-

ber of elements on the boundary of BEM and FEM models

as 40, 80, 120, 160, 200, 240, 280, 320 BEs, and 426, 1708,

3882, 6992, 10688, 13356, 21306, 27652 FEs. In Fig. 7, f1

amd f2 obtained by BEM have Rerror 6 5.8678 × 10−4(40

BEs), and for the results of FEM, Rerror 6 5.136×10−2(426

FEs). In Fig. 8, f7 and f8 obtained by BEM have Rerror 6
5.9533 × 10−4(40 BEs), and for the results from FEM, f7

has Rerror 6 8.1140 × 10−2(426 FEs) while f8 has smaller

Rerror 6 1.5183× 10−3(426 FEs) since its eigenmode is sim-

pler than others. It can be seen that the numerical results

given by BEM have much smaller relative errors when eigen-

modes are complicated.

4. Conclusions

The investigation on eigensolutions for 2D elastic struc-

ture is carried out by using BEM combined with block SS

method, and the results are compared with those obtained

by FEM. With the same boundary discretization for BEM

and FEM, BEM provides more accurate numerical results



since it does not have domain discretization. For FEM, it

is found that a insufficient domain discretization lowers the

accuracy of the eigenvalues when the eigenmodes in internal

domain are complicated, therefore, the order of eigenvalues

might be different from the closed form. However, the re-

sults obtained by BEM are not affected by the complexity of

eigenmodes in internal domain.
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