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Topology optimization for 2D heat conduction problems using
boundary element method and level set method
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The heat conduction problem is one of the typical physical problems and shape and/or topology

optimization considering the heat property is quite important. In this paper, a level set based topology

optimization method with the boundary element method (BEM) for 2D heat conduction problems is

investigated. The boundary element method is convenient in generating the boundary mesh at every

iterative step of optimization. The effectiveness of the proposed approach is demonstrated through

some numerical examples. From these examples, we conclude that the optimization for heat problem

can be dealt with the boundary element method.
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1. Introduction

This paper discusses a design method for heat conduction prob-

lems. The heat conduction problem is one of the typical physical

problems. A method to obtain reasonable structure (less material

and high heat efficiency) for heat devices is desired in the field of

mechanical engineering. There are some optimization method to

design material shapes, for example, size (1), shape (2) and topology

optimization (3). We here employ the topology optimization method

to design the reasonable structure.

The topology optimization is widely studied and applied to a va-

riety of structural optimization problems such as the stiffness max-

imization problem (3, 4), compliant mechanisms (5), and thermal

problems (6).

Since the topology optimization concerns with material distribu-

tion, characteristic functions are employed to distinguish the mate-

rial region from non-material region (void domain). However, this

always results in the discontinuity of the material distribution. To

remove the discontinuity, many regularization techniques are pro-

posed, such as homogenization design method (3), and solid isotropic

material with penalization (SIMP) method (7) for the relaxation of

the design domain.

These methods play an important role in eliminating the disconti-
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nuity of the obtained optimum shape, however, they usually give an

“intermediate material”, which is neither material nor non-material

domain. To resolve this issue, Wang et al. proposed a level set

based structural optimization method. It is reviewed as a new kind

of method, which is based on solving the Hamilton-Jacobi partial

differential equation, with an appropriate normal velocity moving

boundary normal to the interface. This method can obtain the opti-

mum shape with the intermediate material but its region is narrow.

Addition to the intermediate domain, the obtained shapes are usu-

ally not smooth. Yamada et al. proposed a topology optimization

method using a level set method incorporating with a fictitious in-

terface energy (8) derived from the phase field concept, in which a

fictitious interface energy term is used (9) to regularize the optimiza-

tion problem.

Most of the above optimization methods use the finite element

method (FEM) as a solver. When the FEM is used, the cost for cre-

ating mesh at every step of the optimization is expensive. To over-

come this issue, we present a level set based topology optimization

for 2D heat conduction problem using boundary element method

(BEM) (10) in this study. When we use the BEM, we may discretize

the boundary of the material, which enables us to save the numer-

ical cost for creating mesh. To this end, we combine the method

proposed by Yamada et al.(8), and try to develop the basic algorithm



of topology optimization approach using BEM.

2. Formulation

2.1. The concept of level set method

The level set method (LSM) is an effective numerical technique

to represent interfaces and shapes of domain. The level set function

φ is defined as follows:
φ(x) > 0, x ∈ Ω

φ(x) = 0, x ∈ Γ

φ(x) < 0, x ∈ D\Ω,

(1)

where D, Ω and Γ denote the fixed design domain which include

material domain and non-material domain, the material domain and

the boundary between material and non-material domain, respec-

tively. We also define a characteristic function χ . The characteristic

x

y

Fig.1 Fixed design domain

function is associated with the level set function φ(x) as follows:

χφ (x) =

{
1, φ(x) ≥ 0

0, φ(x) < 0.
(2)

2.2. Topology optimization problem

We consider the following optimization problem where the ob-

jective function is defined only on boundary:

inf
φ

F(χφ ) =
∫

Γ
f (u,q) dΓ, (3)

subject to 
∇2u = 0 in Ω

u = u on Γu

q = q on Γq

(4)

and

G(χφ ) =
∫

D
χφ dΩ−Gmax ≤ 0, (5)

where f (u,q) is a function of u and q defined on Γ or part of Γ,

u and q = −k
∂u
∂n

are temperature and heat flux of the temperature

field with the thermal conductivity k, respectively. Also, n is an

outward normal vector on Γ. Gmax is the admissible upper limit of

the area of the material domain Ω.

Using Lagrange’s method, the optimization problem (3)–(5) is

turned to be the following unconstrained optimization problem:

inf
φ

F = F(χ)+ I +λG, (6)

where λ is the Lagrange multiplier for equation (5) and I is a func-

tion defined as follows:

I =
∫

D
µ(∇2u) dΩ = 0. (7)

The above optimization problem has to satisfy the following Karush-

Kuhn-Tucker (KKT) (11) conditions:

F ′ + I′ +λ = 0, λG = 0, λ ≥ 0, G ≤ 0, (8)

where a prime symbol (′) denotes a topological derivative, which

characterizes a sensitivity of the objective function (3) when a in-

finitely small circular hole is created. By solving the KKT condi-

tions, we can obtain an optimum distribution of the level set func-

tion and the associated shape and topology of Ω. If we solve in-

equality (8) as is, however, we obtain the level set function which

might be discontinuous at everywhere. This issue is known to be

caused by the ill-posedness of the topology optimization. To avoid

this, we here use the Tikhonov regularization (12), i.e., we replace

the objective function F (Eq. (8)) by the following FR:

FR = F +
1
2

τ
∫

D
|∇φ |2 dΩ, (9)

where τ is a regularization parameter. We can control the complex-

ity of the obtained optimal configuration by adjusting τ .

Since it is difficult to obtain the level set function satisfied the

KKT conditions, we introduce a fictitious time t and assume that

the time derivative of the level set function φ is proportional to the

topological derivative of FR as follows:

∂φ
∂ t

= −KF ′
R in D. (10)

As a result, an optimum distribution of the level set function can be

obtained as the solution of the following boundary value problem:

∂φ
∂ t

= −K(F ′ + I′ +λ − τ∇2φ) in D

∂φ
∂n

= 0 on Γ\ΓN

φ = 1 on ΓN ,

(11)

where K is a constant. ΓN is the non-design boundary. F ′ + I′ can

be derived to be −2k∇u ·∇µ by introducing an adjoint field (13).

The boundary value problem of adjoint field µ is governed by the

following boundary value problem:

∇2µ = 0 in Ω

µ = −∂ f
∂q

on Γu

−k
∂ µ
∂n

=
∂ f
∂ u

on Γq.

(12)



We here use the finite element method to solve the boundary

value problem Eq. (11).

2.3. Boundary element method

We use the boundary element method to obtain u and µ in equa-

tions (4) and (12). For the boundary value problem of temperature

field u in equation (4), in the case of the boundary Γ is smooth, the

boundary integral equation is written as follows:

1
2

u(y) =
∫

Γ
u∗(x,y)q(x)dΓ(x)

−
∫

Γ
q∗(x,y)u(x)dΓ(x), y ∈ Γ, (13)

where u∗(x,y) and q∗(x,y) are the fundamental solution of Laplace’s

equation and its normal derivative, respectively. u∗(x,y) is given as

follows:

u∗(x,y) =
1

2π
ln

1
r
, (14)

q∗(x,y) =
−1
2πr

∂ r
∂n

, (15)

where r denotes the distance between x and y. By discretizing equa-

tion (13), we have the following system of equations:

[H]{u} = [G]{q}. (16)

After moving the unknowns to the left-hand side and the knowns to

the right-hand side, we have

[A]{X} = {Y}, (17)

where {X} is the vector consisting of only unknown nodal values

and {Y} is the vector obtained by multiplying the known nodal val-

ues with corresponding parts of the coefficient matrices [H] and [G].

Once we obtain the solution of equation (17), the temperature field

u inside the domain Ω can be calculated by the following integral

representation:

u(y) =
∫

Γ
u∗(x,y)q(x)dΓ(x)

−
∫

Γ
q∗(x,y)u(x)dΓ(x), y ∈ Ω. (18)

We can obtain ∇u by differentiating equation (18). The adjoint filed

µ can be obtained in the exact same manner.

3. Numerical Examples

The numerical experiment are run on a computer with Intel Core

i7-2600 processor whose clock rate is 3.40GHz.

3.1. Numerical Example 1

To check the effectiveness of the proposed methodology for 2D

heat conduction problem, we consider a heat conduction problem

shown as Fig. 2.

The size of fixed design domain D is set to be 0.5 m× 0.5 m. As

an initial configuration, we filled the fixed design domain with steel

whose thermal conductivity is 17.0 W/(m ·K) or with steel whose

thermal conductivity is 7.0 W/(m ·K).

The prescribed temperature and heat flux are given ū = 100◦C

on Γu and q̄ = 1000 W/m on Γq, respectively, where Γu and Γq are

defined as shown in Fig. 2. The length of Γu and Γq are 0.05 m.

The rest of the boundary is insulate boundary.

Fig.2 Fixed design domain for numerical example 1.

Our objective is to minimize the objective function defined on

Γq. The objective function is given as follows:

F(χφ ) =
∫

Γq

(u− û)2 dΓ, (19)

where û is the objective temperature, which is set to be 60◦C. Gmax

in Eq. (5) is set to 20% of the fixed design domain. The regular-

ization parameter is set as τ = 3.0×10−3. The coefficient K of the

time evolution equation in Eq. (10) is set as 5.0. The time increment

δ t is set as 0.1. We use square shaped meshes to solve the boundary

value problem (Eq. (11)). The fixed design domain is divided into

60 × 60 cells. The boundary element meshes to solve the bound-

ary value problems (4) and (12) are created by tracking the zeros of

the value of the level set function which is evaluated on the finite

element nodes.

The obtained optimum distributions of material are shown as

Fig. 3 and Fig. 4. The computational times are 1012sec for both

cases with different thermal conductivities.

From Fig. 3 and Fig. 4, for these problems, the thermal conduc-

tivity is irrelevant to the optimal shape. Also, we can see that the

obtained shape has smooth boundaries. The objective function val-

ues against the iterative step of optimization are shown in Fig. 5 and

Fig. 6. From these two figures, we can find that the objective func-

tions decrease step by step and converge to about 0.60 for the case

with thermal conductivity as 17.0 W/(m ·K) and 0.10 with thermal

conductivity as 7.0 W/(m ·K).

Next, we investigate the influence of the initial configuration to

the optimum results. We here use steel whose conductivity is 17.0



Fig.3 Obtained shapes for the numerical example 1

with thermal conductivity as 17.0 W/(m ·K)..

Fig.4 Obtained shapes for the numerical example 1

with thermal conductivity as 7.0 W/(m ·K).

W/(m·K) as material. We consider the following 3 initial configura-

tions; (1) the whole fixed design domain is filled with Ω, (2) Ω has 4

holes and (3) Ω has 9 holes. We henceforth denote the above initial

configurations as “without hole”, “with 4 holes” and “with 9 holes”,

respectively. Figs. 7–9 show initial, intermediate and optimum con-

figurations. For these 3 cases, the regularization parameter is set as

τ = 5.0×10−3, the coefficient K of the time evolution equation in

Eq. (10) is set as 5.0, and the time increment δ t is set as 0.1. From

these figures we found that the initial configuration has influences

on the obtained optimum shape. This is partly because that the topo-

logical derivative F ′ + I′ in Eq. (11) is equal to zero in D \Ω. The

computational time is 316 sec for the case without holes, 517 sec

for the case with 4 holes and 546 sec for the case with 9 holes.

Fig. 10 shows the objective function history for each initial con-

figuration. We can confirm that the objective function for all ini-

tial configurations converged to similar values. With these obser-

vations, we conclude that the problem treated in this section has

similar solutions.

3.2. Numerical Example 2

We next consider the problem shown as Fig.11. The prescribed

temperature ū = 100◦C on Γu, and the prescribed heat flux q̄ =

1000W/m on Γq. The rest of the boundary is insulate boundary.
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Fig.5 Normalized objective function value history for

the numerical example 1 with thermal conduc-

tivity as 17.0 W/(m ·K).
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Fig.6 Normalized objective function value history for

the numerical example 1 with thermal conduc-

tivity as 7.0 W/(m ·K).

The objective function for this example is same as that for the

previous one in Eq. (19) with û = 60◦C. Gmax in Eq. (5) is set to

20% of the fixed design domain. The regularization parameter is

set as τ = 5.0×10−3. The coefficient K of time evolution equation

(11) is set as 5.0 and time increment δ t is set as 0.1.

The boundary element is generated by searching 0-value level-set

function based on the mesh of 40×40 cells. The obtained topology

distributions of different initial configurations are shown as Figs. 12,

13 and 14. Also, the objective function of this example with differ-

ent initial configurations are shown as Fig. (15). From these figures,

we conclude the following:

• The objective function decreased enough.

• The obtained configurations have smooth boundary.

• When the initial configuration is different, the proposed method

could give the similar optimum configuration.



Fig.7 (left:) Initial (center:) intermediate (right:) an

optimal configuration “without hole” for the nu-

merical example 1.

Fig.8 (left:) Initial (center:) intermediate (right:) an

optimal configuration “with 4 holes” for the nu-

merical example 1.

The computational time is 344 sec for the case without holes,

382 sec for the case with 4 holes and 391 sec for the case with 9

holes.

4. Conclusion

In this paper, we proposed a new topology optimization method

combined with the level set method and the boundary element method

for 2D heat conduction problem. Through the numerical examples,

we have proved that the proposed methodology is effective for 2D

heat conduction problems. Besides, we have conclude that cases of

different initial configurations have the same converging tendency,

and converged to similar shapes. In particular, we have successfully

obtained a few material smooth shapes with specified temperatures

on a part of the material boundary. We also note that the computa-

tional time is short for all the cases. In the following work, we will

move our research more on the effect of thermal conductivity to the

convergency and later investigate topology optimization using BEM

for acoustic and electromagnetic problems.
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