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Analysis of acoustic transmission for one directional periodic

bounded structure in 2D by BEM
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In this paper, the acoustic transmission of one directional 2D finite periodic bounded structure is
investigated by BEM, and to avoid solving the whole matrix, a size-reduced system matrix is for-
mulated to compute the transmission problem. In the size-reduced system matrix, the unknowns on
free boundary of the periodic parts are removed. Also the block Sakurai-Sugiura (SS) method is
employed to compute the band structure of a unit cell for the infinite periodic structure. In order
to eliminate the fictitious eigenvalues resulted by internal closed boundary, Burton-Miller’s method
is used. Furthermore, we compute the eigenfrequencies of the finite structure having periodic parts
and show that the distribution of the eigenfrequencies follows the location of bandgap. Numerical
results show that when the number of layers of the periodic parts in the finite periodic structure is
large enough, the transmissivity is in a good agreement with the bandgaps.
Key Words : finite periodic structure, block Sakurai-Sugiura Method, eigenfrequency, boundary
element method

1. Introduction
The studies of 1D periodic structures or materials have received

considerable attention in the literature(1, 2, 3, 4). Due to the disper-
sive nature of periodic structures, they may exhibit frequency range
where the propagation of mechanical waves are forbidden. These
frequency ranges are commonly called stop bands or bandgaps and
the remaining ranges are called pass bands. To compute the dis-
persion curves and find the bandgaps, transfer matrix method(2, 3, 4)

is often used, however boundary element method (BEM) is also an
attractive method to find bandgaps since it can keep the unknowns
on the boundary where homogenous boundary condition is given.

Block SS method(5, 6, 7, 8, 9, 10), which is one of contour integral
methods, converts the nonlinear eigenvalue problem (NEP) to a
generalized eigenvalue problem of two Hankel matrices with a re-
duced eigenspace. The dimension of the Hankel matrices is very
small and computational cost is neglectable comparing with the
original system matrix. The main computational cost is, however,
the evaluation of the moment matrices which are used to form the
Hankel matrices. It results in solving BEM for N times which
is the number of points on the contour integral path when trape-
zoidal rule is employed. The emerging of fast algorithm such as
fast multipole boundary element method (FMBEM)(11), adaptive
cross-approximation boundary element method (ACA-BEM)(12, 13)

makes it possible to solve eigenvalue problem by using BEM effi-
ciently.

We presented eigenvalue analysis for 2D cavities, in author’s pre-
vious research(14), in which only simply connected region is consid-
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ered, so there is no internal closed boundary or fictitious eigenvalues
exist in the numerical results.

In this research, we apply the block SS method to compute the
eigenvalues of the transmission problems in one directional peri-
odic bounded structure in two dimensional domain. To reduce the
dimension of the system matrix, we only carry out the integration
of unit cell once and represent the unknowns on the free bound-
ary by using the unknowns on connection interfaces which are con-
sidered as virtual interfaces if the same materials are used at the
connection interfaces of adjacent cells, but if the materials are not
same, then the interfaces are not virtual. For the calculation of
dispersion curves, the scatter in the matrix material has a closed
boundary which means that the domain is a complex connected re-
gion. The internal closed boundary results in appearance of ficti-
tious eigenvalues when the eigenvalue problem is solved by using
block SS method with conventional BEM. In order to acquire the
correct results without any fictitious eigenvalues, we here employ
Burton-Miller’s method (15), by which large imaginary components
are added to the fictitious eigenvalues, then they can be filtered be-
cause of the large imaginary part. Numerical examples with the
different number of finite periodic layers are given to demonstrate
the correctness of proposed methodology.

2. Formulation
In physics, the propagation of acoustic waves through a material

medium is governed by the Helmholtz euqation:

∇2 p(x)+ k2 p(x) = 0 in T , (1)



where p is the sound pressure, ∇2 is the Laplace operator, and k =
ω
C is a predefined wave number, ω is circular frequency, C is the
wave speed, and T is the domain. Usually we have the following
boundary conditions:

p = p̄ on Sp,

q =
∂ p̄
∂n

= iρω v̄ on Sq,

where n is the normal direction at the boundary, ρ is the density, v
is the particle velocity.

Equation (1) can be transformed into the integral equation by us-
ing the following fundamental solution (2) and its normal derivative
(3) for 2D Helmholtz equation:

p∗(x,y) =
i
4

H(1)
0 (kr), (2)

q∗(x,y) =
∂ p∗(x,y)

∂n(x)
= −ki

4
H(1)

1 (kr)
∂ r

∂n(x)
, (3)

where y is the collocation point and x is the source point, r is the
distance between x and y, i is the imaginary unit, H(1)

i denotes the
Hankel function of the first kind, n(x) is the outward normal di-
rection to the boundary at x. With Green’s identity, the integral
representation for p(y) can be obtained as

p(y)+
∫

S
q∗(x,y)p(x)dS(x) =

∫
S

p∗(x,y)q(x)dS(x). (4)

The normal directional derivative of Eq.(4) at y is written as

q(y)+
∫

S
q̂∗(x,y)p(x)dS(x)−

∫
S

p̂∗(x,y)q(x)dS(x) = 0 in T , (5)

where p̂∗(x,y) and q̂∗(x,y) are the normal directional derivative of
p∗(x,y) and q∗(x,y), respectively:

p̂∗(x,y) =
∂ p∗(x,y)

∂n(y)
= −ki

4
H(1)

1 (kr)
∂ r

∂n(y)
, (6)

q̂∗(x,y) =
∂q∗(x,y)

∂ n(y)

= −k2i
8

[H(1)
0 (kr)−H(1)

2 (kr)]
∂ r

∂n(y)
∂ r

∂n(x)

−ki
4

H(1)
1 (kr)

∂ 2r
∂ n(y)∂n(x)

. (7)

Let the internal point y tend to the boundary of T , then, evaluating
the boundary integrals in Eqs. (4) and (5), we obtain the following
boundary integral equaitons:

cy p(y)+−
∫

S
q∗(x,y)p(x)dS(x) =

∫
S

p∗(x,y)q(x)dS(x), (8)

cyq(y)+=
∫

S
q̂∗(x,y)p(x)dS(x) = −

∫
S

p̂∗(x,y)q(x)dS(x), (9)

where cy = 1
2 if S is smooth around y, −

∫
denotes that the integral

must be evaluated in the sense of Cauchy’s principal value, =
∫

de-
notes that the integral must be evaluated in the sense of finite-part
value of divergent integral.

Let us consider two domains connected by a certain number of
periodic structures shown in Fig.1, in which Ωi denotes the input
domain, Ωo denotes the output domain, D1,D2, · · · ,Dn are the ma-
trix domains of the periodic parts, Σ1,Σ2, · · · ,Σn are scatters in the
corresponding matrix domains.

Fig.1 The finite periodic structure.

First, let us derive the system equations of a unit cell in the pe-
riodic parts. In Fig.2, the boundary of the l-th cell is defined as
follows: the boundary shown with a broken line on the left-hand
side is the output boundary Γl−1

o of cell l − 1 and also the input
boundary Γl

i of cell l; similarly, the boundary shown with a broken
line on the right-hand side is the output boundary Γl

o of cell l and
also the input boundary Γl+1

i of cell l +1. Γl
s denotes the remaining

free part of the boundary.
The discretized boundary integral equations of a unit cell can be

written in a matrices form as follows:
Hii Hio His

Hoi Hoo Hos

Hsi Hso Hss




pi

po

ps

 =


Gii Gio Gis

Goi Goo Gos

Gsi Gso Gss




qi

qo

qs

 .

(10)

In Eq.(10), pi, po, ps, and qi, qo, qs are the sound pressures and its
normal derivatives on the input boundary Γi, the output boundary
Γo, and the free boundary Γs, respectively.

Rearranging the coefficients of the quantities on the free bound-
ary yields

Hii Hio Ais

Hoi Hoo Aos

Hsi Hso Ass




pi

po

xs

 =


Gii Gio Bis

Goi Goo Bos

Gsi Gso Bss




qi

qo

ys

 ,

(11)
where xs denotes the unknowns, ys denotes the knowns on the free
boundary. Then, xs can be represented by other quantities, as fol-
lows:

xs = −A−1
ss Hsi pi −A−1

ss Hso po

+A−1
ss Gsiqi +A−1

ss Gsoqo +A−1
ss Bssys. (12)

Fig.2 A unit cell.



Fig.3 The definition of the boundary of input and out-
put domains.

In light of (11) and (12), the unknowns on the free boundary are
eliminated, as follows: Hio −AisA−1

ss Hso −Gio +AisA−1
ss Gso

Hoo −AosA−1
ss Hso −Goo +AosA−1

ss Gso

 po

qo


=

 −Hii +AisA−1
ss Hsi Gii −AisA−1

ss Gsi

−Hoi +AosA−1
ss Hsi Goi −AosA−1

ss Gsi

 pi

qi


+

 Bis −AisA−1
ss Bss

Bos −AosA−1
ss Bss

(
ys

)
.

(13)

Let the coefficient matrices in Eq.(13) be represented by M, N,
Lys respectively, then Eq.(13) can be written in a more compact
form:

Mxl+1 = Nxl +Lys, (14)

where xl and xl+1 denotes the quantities on the input and output
boundaries, respectively. It should be noticed that the normal deriva-
tives in xl+1 have interior normal direction in Eq.(14). For the input
domain Ωi and output domain Ωo, their boundaries are defined in
Fig.3. The system of the algebraic equations for the input and out-
put domains is written in the following form:

ALxL +AL1x1 = yL, (15)

ARnxn +ARxR = yR, (16)

where x1 denotes the quantities on Γ1
o, xL denotes the quantities on

ΓL, xn denotes the quantities on Γn
i , and xR denotes the quantities

on ΓR.
Combining all the algebraic equations (14), (15), and (16) to-

gether, the entire matrix equation in which the unknowns on all the
free boundaries are eliminated is obtained as follows:

AL AL1 0 0 0 0 0

0 −N M 0 0 0 0
0 0 −N M 0 0 0

0 0 0
. . .

. . . 0 0

0 0 0 0 −N M 0

0 0 0 0 0 ARn AR





xL

x1

x2

...

xn

xR


=



yL

Lys

Lys

...

Lys

yR


.

(17)
In this formula, we have only three unknown groups: (i) the input
domain, (ii) the output domain, (iii) connection interfaces of the
cells. All unknowns on the free boundary of the connection parts
are removed, for instance, if we consider 100 layers of periodic

v=0

v=0

v=0

v=0

0
.7

Fig.4 Input and output domains connected by square
cells. The cross symbols denote the observation
points.

structure and the number of elements for free boundary of unit cell
is 20, then 20×100 = 2000 unknowns and equations are reduced.

We now consider an infinite one directional 2D periodic structure
formed with the cells shown in Fig. 2. Then, the system of the
algebraic equations can be written in the form:

[
Hi Ho Hs

] pi

po

ps

 =
[

Gi Go Gs

] qi

qo

qs

 . (18)

According to Bloch’s theorem, the following relations hold:

po = pi exp(ika), (19)

qo = qi(−exp(ika)), (20)

where a is the length of a single cell along the periodic direction,
k is the wave vector. When we substitute above relations and the
homogenous boundary condition on the free boundary to Eq.(18),
we have the following system of NEP:(

Hi +Ho exp(ika) −Gi −Go(−exp(ika)) As

)
×

 pi

qi

xs

 = 0.
(21)

As k = ω
C , the eigenvalue parameter ω is involved in coefficient

matrix of Eq. (21) implicitly. Here, we employ a contour integral
method, the block SS method as an eigensolver which has been
applied to solve the eigenvalues of a 2D acoustic cavity by BEM
(14), and Burton-Miller’s method is used to eliminate the fictitious
eigenvalues. The parameter α of Burton-Miller’s method is chosen
as i/2k.

3. Numerical example
A finite structure having periodic parts is depicted in Fig.4. Square

input and output domains are connected by N layers of square cells
with cylinder scatters, and all sides of the square structures are as-
sumed to be 1[m]. A nonsymmetrical excitation is given as the par-
ticle velocity v = 1[m/s] on 70% of the edge of the input domain,
while in the output domain, 30 observation points are distributed.
The points from number 1 to 10, 11 to 20 and 21 to 30 have the
same y coordinates as y = 0.5, y = 0.25, y = 0.75 respectively, while
x coordinates for the each 10 points are 0.05, 0.15, · · · , 0.95, and
unit is [m]. First, assuming that the unit cell is one layer of an in-
finite one directional periodic structure and solving the NEP given



Table 1 Parameters of the model.

Sound velocity [m/s] 337.2

Density [kg/m3] 1.22

Filling fraction 0.503

Filling material rigid

Cell length [m] 1

by Eq.(21) using BEM based on Burton-Miller’s method, we obtain
the dispersion curves corresponding to the variable wave vector k
from 0 to π . For the Block SS method, solved range is assumed
as [500,4500]. The numerical results for the dispersion curves ob-
tained by the conventional BEM and that based on Burton-Miller’s
method are shown in Figs.5 and 6, respectively. Since the fictitious
eigenvalues are constants when the wave vector k varies from 0 to
π , there are horizontal lines showing fictitious eigenvalues in Fig.5.
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k

Fig. 5 Dispersion curves (by conventional BEM) with fictitious
eigenvalues (horizontal lines).
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Fig.6 Dispersion curves (by the Burton-Miller
method) and bandgaps (shade).

Next, let us consider the transmission problem and use different
models by changing the layers of the connection parts. The trans-
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Fig.7 Transmissivity of finite periodic structure with
12 layers.

missivities of the finite periodic structure with 12, 25, 50, 100 layers
are shown in Figs.7 to 10, in which the sound pressures at 30 ob-
servation points are plotted, and in Figs.7(b) to 10(b) are shown
their projections on ω-p plane. From the figures of transmissivity,
it is found that the transmissivity becomes very low in the bandgaps
particularly when the number of the layers is larger than 25.

To obtain the bandgaps of the finite structure, the block SS method
is directly applied to compute the eigenfrequencies of the size-reduced
system matrix (17) that is also of a NEP. The eigenfrequencies of
models with 12, 25, 50, 100 layers are shown in Figs.11 to 14, re-
spectively, corresponding to the solved range [500,1500] in which
1 bandgap is included. Eigenfrequencies out of this range are also
obtained. From these numerical results, it is found that the dis-
tribution of the eigenvalues along the real-axis have the bandgap
shown in Fig. 6. However, as is found in Figs.11 to 14, two eigen-
frequencies 1252.513 and 1262.504 are always found in the range
of bandgap. These eigenfrequencies do not change even when the
number of layers is changed, hence the two eigenfrequencies can be
considered as those corresponding to eigenmodes which have large
amplitude in input and output domains while small amplitude in
connection part.

4. Conclusion
The present study was undertaken to develop a method for in-

vestigations of one directional 2D finite periodic bounded acous-
tic structures. This was achieved by calculation of transmissivity
by solving size-reduced system matrix and bandgap by using BEM
combined with the block SS method. By using Bloch’s theorem
to the unit cell, the block SS method has been directly applied to
computation of the NEP formulated by BEM. The fictitious eigen-
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Fig.8 Transmissivity of finite periodic structure with
25 layers.
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Fig.9 Transmissivity of finite periodic structure with
50 layers.
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Fig.10 Transmissivity of finite periodic structure with
100 layers.

values observed in the computation could be removed by employing
Burton-Miller’s method. Furthermore, the eigenfrequencies of the
finite periodic bounded structure was also obtained and they showed
a bandgap which had a good agreement with the results obtained by
computing for the unit cell.

The present work is being further developed to solve the size-
reduced matrix by using recursive matrix, because this matrix can
be divided into different parts, among which a simple diagonal band
matrix is found.
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