音場・弾性場連成問題における周期多重極法の Calderonの式に基づく前処理について

On the Calderon preconditioning for periodic FMMs in acoustic-elastodynamic coupled problems

飯盛 浩司¹⁾, 西村 直志²⁾

Hiroshi ISAKARI and Naoshi NISHIMURA

1) 名古屋大学大学院工学研究科	(〒 464-8604	名古屋市千種区不老町,	E-mail: isakari@nuem.nagoya-u.ac.jp)
2) 京都大学大学院情報学研究科	(〒606-8501	京都市左京区吉田本町,	E-mail: nchml@i.kyoto-u.ac.jp)

Periodic structures, such as phononic crystals in acoustics, have been brought to attention during the past few decades. Particularly interesting is a phenomenon called the anomaly, in which a slight change of incident angle or frequency of the incident wave may cause a drastic change on the scattered field. Near anomalies, the transmittance shows sudden peak or dip. It is also known that near the anomaly the convergence of numerical solver will decline. Our objective is to construct a solver which is fast even around the anomaly. To this end, we investigate a Calderon's preconditioning for FMM in acoustic-elastodynamic coupled problems in periodic problems related to sound scattering by phononic crystals. It is found that the Calderon preconditioning can accelerate the convergence of algebraic equation solvers more effectively than the conventional ones. *Key Words* : Periodic Fast Multipole Method, Calderon's Preconditioning, Phononic Structure, Extraordinary Acoustic Transmission

1. 緒言

フォノニック結晶等、周期構造に起因した特異な現象を利 用した新しい材料の開発が弾性波デバイスの分野でも盛んに なってきている⁽¹⁾。著者らは、フォノニック結晶による弾性 波動散乱問題の数値解析ツールとして、周期多重極法⁽²⁾の 開発を行ってきた⁽³⁾。また、フォノニック結晶による音波散 乱問題を取り扱うため、前報では、音場・弾性場連成問題に 対する周期多重極法の開発を行った⁽⁴⁾。しかしながら、音 場・弾性場連成問題に対しては、計算精度は十分であったも のの、代数方程式に対する反復法の収束性が悪く、計算効率 の向上は課題として残っている。特に、アノマリ付近におい ても高速な手法を開発することが重要となる。

一方で、境界要素法に現れる代数方程式の求解の加速法と して、Calderonの式に基づく前処理を挙げることが出来る ⁽⁵⁾。近年、著者らは Calderonの式に基づく前処理の周期問 題への適用可能性を検討してきた。その結果、Calderonの 式に基づく前処理は、アノマリ付近においても収束性を改善 することが分かってきた^(6,7)。

本論文では、音場・弾性場連成問題における周期多重極法 の Calderon の式に基づく前処理の開発を行う。これまでの Calderon の式に基づく前処理に関する研究は PMCHWT 定 式化⁽⁸⁾に基づくものが多いため、ここでも、本問題に対す る PMCHWT 定式化及びその Calderon の式に基づく前処理 について検討を行う。また、Burton-Miller 法を用いた積分 方程式に対する Calderon の式に基づく前処理についても併 せて開発を行う。

2. 定式化

2.1. 周期領域における音場・弾性場連成問題

Fig. 1 Periodic boundary value problems

解析領域 D を

$$D = \left((-\infty, \infty) \otimes \left[-\zeta_2/2, \zeta_2/2 \right] \otimes \left[-\zeta_3/2, \zeta_3/2 \right] \right)$$
(1)

とする。すなわち、3次元領域における2重周期問題を考え、

²⁰¹²年9月24日受付, 2012年11月3日受理

 x_2 軸方向の周期は ζ_2 、 x_3 軸方向の周期は ζ_3 であるとする。 ここでは簡単のため、2 領域問題を考え、Fig. 1 に示すよう に $D = D_1 \cup D_2$ であるとする。さらに、領域 D_1 は非粘性 流体、 D_2 は弾性体で満たされているとする。

領域 D に音圧 p^{I} を入射する問題を考える。領域 D_{1} において、音圧 p は次の Helmholtz 方程式を満たす。

$$p_{,jj} + k^{(1)2}p = 0 \tag{2}$$

ここに、 $k^{(1)} = \omega \sqrt{\rho^{(1)}/\lambda^{(1)}}$ は波数、 $\lambda^{(1)}$ は体積弾性係数、 $\rho^{(1)}$ は領域 D_1 を構成する材料の密度である。また、領域 D_2 において、変位 u_i は次の Navier-Cauchy の式を満たす。

$$\mu^{(2)}u_{i,jj} + (\lambda^{(2)} + \mu^{(2)})u_{j,ij} + \rho^{(2)}\omega^2 u_i = 0$$
 (3)

ここに、 $\rho^{(2)}$ は領域 D_2 を構成する材料の密度、 $\lambda^{(2)}$ 、 $\mu^{(2)}$ は Lamé 定数であり、これを用いて弾性テンソル $C_{ijpq}^{(2)}$ は次の ように定義される。

$$C_{ijpq}^{(2)} = \lambda^{(2)} \delta_{ij} \delta_{pq} + \mu^{(2)} (\delta_{ip} \delta_{jq} + \delta_{iq} \delta_{jp})$$

境界条件として、力の釣り合い

$$t_i = -pn_i \tag{4}$$

及び法線方向変位速度の連続性

$$-i\omega u_i n_i = v_i n_i \tag{5}$$

を $\partial D_1 \cap \partial D_2$ において課す。ここに、 $t_i = C_{ijpq}^{(2)} u_{p,q} n_j$ は領 域 D_2 におけるトラクション、 n_i は $\partial D_1 \cap \partial D_2$ 上の単位法線 ベクトル (D_1 から見て外向きを正と定める)、 v_i は領域 D_1 における粒子速度である。

一方で、粒子速度 v_i は、D₁における運動方程式

$$\rho^{(1)}\frac{\partial v_i}{\partial t} = -p_{,i} \tag{6}$$

を考慮すると、音圧pと次式で関連づけられる。

$$\frac{\partial p}{\partial n} = i\rho^{(1)}\omega v_i n_i \tag{7}$$

さらに、散乱場に対し、無限遠において放射条件を課すもの とする。

また、周期境界 $S^{P} = \{x \mid |x_{2}| = \zeta_{2}/2 \text{ or } |x_{3}| = \zeta_{3}/2\}$ 上で は以下のような周期境界条件が課されているとする。

$$p\left(x_1, \frac{\zeta_2}{2}, x_3\right) = e^{\mathrm{i}\beta_2} p\left(x_1, -\frac{\zeta_2}{2}, x_3\right) \tag{8}$$

$$\frac{\partial p}{\partial x_2}\left(x_1, \frac{\zeta_2}{2}, x_3\right) = e^{\mathrm{i}\beta_2} \frac{\partial p}{\partial x_2}\left(x_1, -\frac{\zeta_2}{2}, x_3\right) \tag{9}$$

$$p\left(x_1, x_2, \frac{\zeta_3}{2}\right) = e^{i\beta_3} p\left(x_1, x_2, -\frac{\zeta_3}{2}\right)$$
(10)

$$\frac{\partial p}{\partial x_3}\left(x_1, x_2, \frac{\zeta_3}{2}\right) = e^{i\beta_3} \frac{\partial p}{\partial x_3}\left(x_1, x_2, -\frac{\zeta_3}{2}\right)$$
(11)

ここに、 $\beta_i = k_i \zeta_i \ (i = 2, 3)$ は入射波の位相差、 k_i は入射波 の波数ベクトルである。

2.2. 境界積分方程式と Calderon の式

本小節では、前小節に示した周期領域における音場,弾性 場連成問題における境界積分方程式及び境界積分方程式に現 れる積分作用素の持つ性質について述べる。

領域 D₁、D₂ からの極限を考えることにより、次の境界積 分方程式が得られる。

$$\frac{1}{2}p = p^{\mathrm{I}} + \mathcal{S}\frac{\partial p}{\partial n_y} - \mathcal{D}p \tag{12}$$

$$-\frac{1}{2}\boldsymbol{u} = \mathcal{U}\boldsymbol{t} - \mathcal{T}\boldsymbol{u} \tag{13}$$

また式 (12)、(13) の微分形として、次の境界積分方程式が得 られる。

$$\frac{1}{2}\frac{\partial p}{\partial n_x} = \frac{\partial p^{\mathrm{I}}}{\partial n_x} + \mathcal{D}^* \frac{\partial p}{\partial n_y} - \mathcal{N}p \tag{14}$$

$$-\frac{1}{2}\boldsymbol{t} = \boldsymbol{\mathcal{T}}^*\boldsymbol{t} - \boldsymbol{\mathcal{W}}\boldsymbol{u}$$
(15)

ここに、S、D、 D^* 、N、U、T、 T^* 、W は次に示す積分作 用素である。

$$Sv = \int_{\partial D} G^{\mathbf{P}}(\boldsymbol{x} - \boldsymbol{y}) v(\boldsymbol{y}) dS_{\boldsymbol{y}}$$
(16)

$$\mathcal{D}v = \int_{\partial D} \frac{\partial G^{\mathrm{P}}(\boldsymbol{x} - \boldsymbol{y})}{\partial n_{y}} v(y) dS_{y}$$
(17)

$$\mathcal{D}^* v = \int_{\partial D} \frac{\partial G^{\mathcal{P}}(\boldsymbol{x} - \boldsymbol{y})}{\partial n_x} v(y) dS_y \tag{18}$$

$$\mathcal{N}v = \text{p.f.} \int_{\partial D} \frac{\partial^2 G^{\mathrm{P}}(\boldsymbol{x} - \boldsymbol{y})}{\partial n_x \partial n_y} v(y) dS_y \tag{19}$$

$$(\mathcal{U}\boldsymbol{v})_i = \int_{\partial D} \Gamma_{ij}(\boldsymbol{x} - \boldsymbol{y}) v_j(y) dS_y$$
(20)

$$(\mathcal{T}\boldsymbol{v})_i = \text{v.p.} \int_{\partial D} \Gamma_{Iij}(\boldsymbol{x} - \boldsymbol{y}) v_j(y) dS_y$$
 (21)

$$(\mathcal{T}^*\boldsymbol{v})_i = \text{v.p.} \int_{\partial D} T_{ij} \Gamma_{jk}(\boldsymbol{x} - \boldsymbol{y}) v_k(y) dS_y \qquad (22)$$

$$(\mathcal{W}\boldsymbol{v})_i = \text{p.f.} \int_{\partial D} T_{ij} \Gamma_{Ijk}(\boldsymbol{x} - \boldsymbol{y}) v_k(y) dS_y$$
 (23)

ここに、"v.p."、"p.f." は各々、Cauchy の主値積分、発散積 分の有限部分を表す。また、G^P は周期境界条件 (式 (8)–(11)) を満たす Green 関数であり、次の格子和表現を有する。

$$G^{\mathrm{P}}(\boldsymbol{x}-\boldsymbol{y}) = \lim_{R \to \infty} \sum_{\boldsymbol{\omega} \in \mathcal{L}(R)} \frac{e^{\mathrm{i}\boldsymbol{k}^{(1)}|\boldsymbol{x}-\boldsymbol{y}-\boldsymbol{\omega}|}}{|\boldsymbol{x}-\boldsymbol{y}-\boldsymbol{\omega}|} e^{\mathrm{i}\boldsymbol{\beta}\cdot\boldsymbol{\omega}}$$
(24)

ここにんは次式で表される格子点である。

$$\mathcal{L}(R) = \{(0,\omega_2,\omega_3) | \omega_2 = p\zeta, \omega_3 = q\zeta, |p|, |q| \le R, \ p,q \in \mathbb{Z}\}$$
(25)

また、 Γ_{ij} , Γ_{Iij} は各々、3次元動弾性学の基本解及び二重層 核である。

式(16)-(19)、(20)-(23)の積分作用素は次の性質を持つ。

- S、D、D*、Uはコンパクト作用素である。すなわち、
 その固有値の集積点は0のみである。
- *T*、*T**の固有値の集積点は0、±cの3点のみである。
 ここに *c* は次式で定義される、*D*2の材料定数にのみ 依存する定数である。

$$c = \frac{\mu^{(2)}}{2(\lambda^{(2)} + 2\mu^{(2)})} = \frac{1}{2} \left(\frac{c_{\rm T}}{c_{\rm L}}\right)^2 \tag{26}$$

 $c_{\rm L}$ 、 $c_{\rm T}$ は各々、 D_2 の縦波速度、横波速度である。

- *N*、*W* は超特異作用素である。
- 次の Calderon の式が成り立つ。

$$\frac{L}{A} = -\mathcal{SN} + \mathcal{DD} \tag{27}$$

$$0 = \mathcal{SD}^* - \mathcal{DS} \tag{28}$$

$$\frac{L}{A} = \mathcal{D}^* \mathcal{D}^* - \mathcal{NS} \tag{29}$$

$$0 = -\mathcal{D}^* \mathcal{N} + \mathcal{N} \mathcal{D} \tag{30}$$

$$\frac{\mathcal{I}}{4} = -\mathcal{U}\mathcal{W} + \mathcal{T}\mathcal{T} \tag{31}$$

$$0 = \mathcal{U}\mathcal{T}^* - \mathcal{T}\mathcal{U} \tag{32}$$

$$\frac{\mathcal{I}}{4} = \mathcal{T}^* \mathcal{T}^* - \mathcal{W} \mathcal{U} \tag{33}$$

$$0 = -\mathcal{T}^* \mathcal{W} + \mathcal{W} \mathcal{T} \tag{34}$$

ここに、エは恒等作用素である。

2.3. PMCHWT 定式化とその Calderon の式に基づく前処理

本問題に対する PMCHWT 定式化⁽⁸⁾に基づく境界積分 方程式は次のように書ける。

$$\begin{pmatrix} -\mathcal{W} - \rho^{(1)}\omega^2 \boldsymbol{n}_x \mathcal{S} \boldsymbol{n}_y^T & \mathcal{T}^* \boldsymbol{n}_y + \boldsymbol{n}_x \mathcal{D} \\ \rho^{(1)}\omega^2 \boldsymbol{n}_x^T \mathcal{T} + \rho^{(1)}\omega^2 \mathcal{D}^* \boldsymbol{n}_y & -\mathcal{N} - \rho^{(1)}\omega^2 \boldsymbol{n}_x^T \mathcal{U} \boldsymbol{n}_y \end{pmatrix} \begin{pmatrix} \boldsymbol{u}(y) \\ p(y) \end{pmatrix} = \begin{pmatrix} \boldsymbol{u}(y) \\ p(y) \end{pmatrix}$$

$$= \begin{pmatrix} p^{\mathrm{I}}(x) \boldsymbol{n}_x \\ -\frac{\partial p^{\mathrm{I}}(x)}{\partial n} \end{pmatrix}$$
(35)

ここに、 $n_x(n_y)$ は点x(y)における単位法線ベクトルである。以降、式(35)の左辺の積分作用素を A_P と書くことにする。

A_P は次のように書き換えることができる。

$$\mathcal{A}_{\rm P} = \mathcal{A}_{\rm P}' + \mathcal{T}_{\rm P} + \mathcal{K}_{\rm P}, \qquad (36)$$

ここに、 \mathcal{A}'_{P} 、 \mathcal{T}_{P} 、 \mathcal{K}_{P} は各々、次式で表される積分作用素である。

$$\mathcal{A}_{\rm P}' = \begin{pmatrix} -\mathcal{W} & 0\\ 0 & -\mathcal{N} \end{pmatrix},\tag{37}$$

$$\mathcal{T}_{\rm P} = \begin{pmatrix} 0 & \mathcal{T}^* \boldsymbol{n}_y \\ \rho^{(1)} \omega^2 \boldsymbol{n}_x^T \mathcal{T} & 0 \end{pmatrix}, \tag{38}$$

$$\mathcal{K}_{\mathrm{P}} = \begin{pmatrix} -\rho^{(1)}\omega^2 \boldsymbol{n}_x \mathcal{S} \boldsymbol{n}_y^T & \boldsymbol{n}_x \mathcal{D} \\ \rho^{(1)}\omega^2 \mathcal{D}^* \boldsymbol{n}_y & -\rho^{(1)}\omega^2 \boldsymbol{n}_x^T \mathcal{U} \boldsymbol{n}_y \end{pmatrix}.$$
(39)

ここで、 \mathcal{K}_{P} はコンパクト作用素である。 \mathcal{K}_{P} のコンパクト 性を保ちつつ、 \mathcal{A}'_{P} 、 \mathcal{T}_{P} の条件を改善することを考える必要 がある。特に、 \mathcal{A}'_{P} は超特異作用素であるため、離散化後の 行列の条件を著しく悪くする可能性がある。超特異作用素の 影響を消去するため、ここでは、次の作用素を考える。

$$\mathcal{M}_{\mathrm{P}}^{-1} = \begin{pmatrix} \mathcal{U} & \mathbf{0} \\ \mathbf{0} & \mathcal{S} \end{pmatrix}.$$
 (40)

この作用素を用いると、Calderonの式 (29)、(33) より、 $\mathcal{A}_{P}\mathcal{M}_{P}^{-1}$ は次のように表される。

$$\begin{aligned} \mathcal{A}_{\mathrm{P}}\mathcal{M}_{\mathrm{P}}^{-1} &= \mathcal{A}_{\mathrm{P}}^{\prime}\mathcal{M}_{\mathrm{P}}^{-1} + \mathcal{T}_{\mathrm{P}}\mathcal{M}_{\mathrm{P}}^{-1} + \mathcal{K}_{\mathrm{P}}\mathcal{M}_{\mathrm{P}}^{-1} \\ &= \begin{pmatrix} \frac{\mathcal{I}}{4} - \mathcal{T}^{*}\mathcal{T}^{*} & \mathbf{0} \\ \mathbf{0} & \frac{\mathcal{I}}{4} - \mathcal{D}^{*}\mathcal{D}^{*} \end{pmatrix} \\ &+ \begin{pmatrix} \mathbf{0} & \mathcal{T}^{*}\mathbf{n}_{y}\mathcal{S} \\ \rho^{(1)}\omega^{2}\mathbf{n}_{x}^{T}\mathcal{T}\mathcal{U} & \mathbf{0} \end{pmatrix} + \mathcal{K}_{\mathrm{P}}\mathcal{M}_{\mathrm{P}}^{-1} \quad (41) \end{aligned}$$

ここで、式 (41) の右辺に現れる作用素のうち、 $\mathcal{K}_{P}\mathcal{M}_{P}^{-1}$ 、 $T^{*}n_{y}S, \rho^{(1)}\omega^{2}n_{x}^{T}TU$ はコンパクト作用素である。また、 T^{*} 、 D^{*} の性質より、 $\mathcal{A}'_{P}\mathcal{M}_{P}^{-1}$ の固有値の集積点は 1/4、1/4 - c^{2} の2点のみであることが分かる。ここに、cは式 (26) で定義 される定数である。

以上より、式 (41) の $A_P M_P^{-1}$ は、「固有値の集積点が 2 点 のみの作用素+コンパクト作用素」となることが分かる。し たがって、これを離散化して得られる行列のほとんど全ての 固有値は、作用素の固有値の集積点の近傍に集中すると考え られる。また、定数 c は縦波の速度と横波の速度の比の 2 乗 であるため、1/4、1/4 - c^2 は非常に近い点であることも分 かる。したがって、式 (40) の M_P^{-1} は有効な前処理行列 (の 逆) と言える。

しかしながら、このように構成した *M*_P は見かけの固有 値に相当する周波数において非正則となる可能性がある。そ こで、実際には見かけの固有値問題が問題とならない十分低 い周波数に対する作用素で置き換えたものを用いる。

2.4. Burton-Miller 法を用いた定式化とその Calderon の式 に基づく前処理

次に、Burton-Miller 法を用いた定式化を示す。式 (12)、 (14) より、次式が成立する。

$$\frac{1}{2}\left(p+\alpha\frac{\partial p}{\partial n_x}\right) = \left(p^{\mathrm{I}}+\alpha\frac{\partial p^{\mathrm{I}}}{\partial n_x}\right) + \left(\mathcal{S}+\alpha\mathcal{D}^*\right)\frac{\partial p}{\partial n_y} - \left(\mathcal{D}+\alpha\mathcal{N}\right)p \quad (42)$$

ここに、 α は Burton-Miller 法の結合定数であり、虚部が零 でない複素数である。式 (13)、(42) から、境界条件 (式 (4)、 (5)) を用いて t、 $\frac{\partial p}{\partial n_y}$ を消去すると、次の積分方程式が得ら れる。

$$\begin{pmatrix} \frac{\mathcal{I}}{2} + \mathcal{D} + \alpha \mathcal{N} & -\rho^{(1)} \omega^2 \left(\mathcal{S} + \alpha \left(\mathcal{D}^* - \frac{\mathcal{I}}{2} \right) \right) \boldsymbol{n}_y^T \\ -\mathcal{U} \boldsymbol{n}_y & \frac{\mathcal{I}}{2} - \mathcal{T} \end{pmatrix} \begin{pmatrix} p(y) \\ \boldsymbol{u}(y) \end{pmatrix} \\ = \begin{pmatrix} p^{\mathrm{I}}(x) + \alpha \frac{\partial p^{\mathrm{I}}(x)}{\partial n} \\ \boldsymbol{0} \end{pmatrix}$$

$$(43)$$

以降、式 (43) の左辺の作用素を A_B と書く。

A_Bを離散化して得られる行列に対する Calderon の式に 基づく前処理行列も、前小節で示した A_P に対するそれと同 様にして構成することができる。すなわち、超特異作用素 N に対して、Sを用いてその超特異性を消去すれば良い。また、 対角スケーリングを同時に行うため、ここでは次の作用素を 考える。

$$\mathcal{M}_{\rm B}^{-1} = \begin{pmatrix} -\frac{2\mathcal{S}}{\alpha} & \mathbf{0} \\ \mathbf{0} & \mathcal{I} \end{pmatrix} \tag{44}$$

 \mathcal{M}_{B}^{-1} を用いると、 $\mathcal{A}_{B}\mathcal{M}_{B}^{-1}$ は次のように書ける。

$$\mathcal{A}_{\mathrm{B}}\mathcal{M}_{\mathrm{B}}^{-1} = \begin{pmatrix} \frac{\mathcal{I}}{2} - \mathcal{D}^{*}\mathcal{D}^{*} & \mathrm{i}\omega\sqrt{\rho^{(1)}\lambda^{(1)}}\mathcal{I}\boldsymbol{n}_{y}^{T} \\ \boldsymbol{0} & \frac{\mathcal{I}}{2} - \mathcal{T} \end{pmatrix} \\ + \begin{pmatrix} -\frac{\mathcal{S} + 2\mathcal{D}\mathcal{S}}{2\mathcal{U}\boldsymbol{n}_{y}^{\alpha}\mathcal{S}} & -\rho^{(1)}\omega^{2}\left(\mathcal{S} + \alpha\mathcal{D}^{*}\right)\boldsymbol{n}_{y}^{T} \\ \frac{2\mathcal{U}\boldsymbol{n}_{y}^{\alpha}\mathcal{S}}{\alpha} & \boldsymbol{0} \end{pmatrix}$$
(45)

ここに、式 (45) の右辺第 2 項はコンパクト作用素である。また、T、 D^* の性質より式 (45) の右辺第 1 項に現れる作用素の固有値の集積点は 1/2、 $1/2 \pm c$ の 3 点のみであることが分かる。したがって、式 (44) の $M_{\rm B}^{-1}$ も、有効な前処理行列(の逆)となっていることがわかる。

また、式 (40) の \mathcal{M}_{P}^{-1} を評価する際と同様に、式 (44) の \mathcal{M}_{B}^{-1} の評価も、見かけの固有値を避けるため、十分に低い 周波数を用いて行う。

最後に、本小節及び前小節で定式化した Calderon の式に 基づく前処理は、非周期問題、すなわち式 (16)-(19) の積分 核を3次元 Helmholtz 方程式の基本解に置き換えた場合にも 適用可能であることに注意しておく。

3. 数値計算例

本節では、数値実験を通して、提案する前処理法の有効 性を検証する。全ての数値計算例を通して、境界積分方程式 の離散化には選点法、一定要素を用いた。また、計算には京 都大学学術情報メディアセンターの Appro GreenBlade 8000 (Subsystem B)を用いた。また、数値計算コードは OpenMP により並列化を行い、16 コアを用いた。

3.1. 係数行列の固有値分布

まずはじめに、提案する前処理が、実際に係数行列の条件 を改善することを確認するため、非周期問題に対して行列を 作成し(すなわち多重極法を用いず)、その固有値分布を調べ た。計算に用いた条件は以下の通りである。

- 領域 D₂ の形状: 球
- 球の半径: 1.0
- 球の表面を 2000 分割 (8000DoF)、4500 分割 (18000DoF)
- 周波数: ω: 3.0
- $\rho^{(1)} = \rho^{(2)} = \lambda^{(1)} = \lambda^{(2)} = \mu^{(2)} = 1.0$
- c = 0.1667

Fig. 2、Fig. 3 は各々、球の表面を 2000 分割した場合の PM-CHWT 定式化、Burton-Miller 法を用いた場合の係数行列の 固有値 σ の分布を示している。前処理行列無しの場合、固有

Fig. 2 The eigenvalues for matrices with PM-CHWT formulation

Fig. 3 The eigenvalues for matrices with Burton-Miller formulation

値は複素面上のどの点にも集中していない一方で、提案する 前処理を用いた場合、固有値はある点のまわりに集まってい る様子が見てとれる。

前節で見積もった点に、固有値が集中していることを確認 するため、Fig. 4 に次の条件を満たす固有値の個数を示す。

$$\left|\operatorname{Im}\left[\sigma\right]\right| \le \varepsilon \, \mathfrak{N} \mathcal{T} \, x < \left|\operatorname{Re}\left[\sigma\right]\right| \le x + \delta \tag{46}$$

ここでは、 $\varepsilon = 0.1$ 、 $\delta = 0.02$ とした。Fig. 4より、PMCHWT 定式化を用いた場合には 0.2 付近、Burton-Miller 法を用いた 場合には 0.38、0.5、0.56 付近に固有値が集まっている様子

Fig. 4 The number of the eigenvalues.

Table 1The ratio of maximum and minimum
absolute value of the eigenvalue for the
PMCHWT formulation

The num. of bound. elem.	2000	4500
Calderon-preconditioned matrix	23.63	23.11
Unpreconditioned matrix	108.40	162.65

Table 2The ratio of maximum and minimum
absolute value of the eigenvalue for the
Burton-Miller formulation

The num. of bound. elem.	2000	4500
Calderon-preconditioned matrix	24.90	25.11
Unpreconditioned matrix	72.07	112.48

が見てとれる。見積りどおりであれば、PMCHWT 定式化を 用いた場合の固有値の集積点は 0.222、0.25 の 2 点、Burton-Miller 法を用いた場合の固有値の集積点は 0.333、0.5、0.667 の 3 点となる。若干のずれがあるものの、概ね見積りどおり の点付近に固有値が集まることが確認できる。

最大固有値の絶対値と最小固有値の絶対値の比 $|\sigma|_{max}/|\sigma|_{min}$ は Table 1、Table 2に示す通りであった。前処理行列を乗じない場合、メッシュ分割数が大きくなると $|\sigma|_{max}/|\sigma|_{min}$ は大きくなるが、提案する前処理法を用いた場合、 $|\sigma|_{max}/|\sigma|_{min}$ はメッシュ分割数に依存せずほぼ一定の値を取ることが分かる。したがって、提案する手法を用いた場合、反復法の反復回数はメッシュ分割数に依存しないと考えられる。

3.2. 周期穴あきスラブによる散乱問題

次に、周期的に円形に穿孔されたスラブ (円孔の半径: 0.1875、 厚さ: 0.3750、周期: $\zeta_{2,3} = 1.000$) による音波の散乱問題を 考える (Fig. 5)。ここでは、母材として水、スラブとしてタ ングステンを想定する。タングステンは水と比べて極端に材 料定数の異なる材料である (Table 3)。垂直入射を考え、周 波数 ω を 3.0 から 16.0 まで 0.1 毎に変化させ、解析を実行し た。水とタングステンの界面を 14948 分割した。この時、問 題の自由度は 119584 となる。ここでは、Burton-Miller 法の 結合定数は $\alpha = -i/k^{(1)}$ とした。

Table 3Material parameters for the perforated
slab problem.

	Density ρ	λ	μ
Tungsten	13.800	145.597	64.85
Water	1.000	1.000	_

Fig. 6 に、Burton-Miller 法に基づく定式化を用いて得られ た透過エネルギを示す。得られた数値解は、Estrada et al.⁽⁹⁾

Fig. 5 Perforated slab immersed in water.

によるスラブを剛体としたモデルと長波長域を除いて一致している。ずれの原因は、長波長域ではスラブの弾性変形が大きいためだと考えられる。また、 $\Lambda/\zeta_{2,3} \approx 1.22$ 付近で、透過エネルギが1に達する異常透過現象を再現できている。さらに、 $\Lambda \approx 0.45$ 、0.5、0.7、1.0付近で見られる透過エネルギのディップはアノマリである。アノマリ付近においても、提案手法は高精度であることが確認できる。

Fig. 6 Transmittance vs normalised wavelength in the case of scattering by periodically perforated tungsten slab.

次に、提案する前処理法の有効性を検証するため、提案す る前処理法を用いた場合と従来法を用いた場合の(F)GMRES の反復回数(Fig. 7)、計算時間(Fig. 8)を示す。従来法として は、ここでは、多重極法の直接計算部分の全てを前処理行列 として用いた。前処理行列の逆を作用させる際にはGMRES を用い、その収束条件は残差が10⁻¹を下回る、あるいは反 復回数が10回に達するのいずれかとした。従来法による結 果は図中では"Direct"と記す。なお、提案法・従来法いずれ を用いた場合も、(F)GMRESの収束条件は10⁻⁵とした。

これらの図から、提案する Calderon の式に基づく前処理 を用いた場合、従来法を用いた場合よりも (F)GMRES の収 束性を改善できていることが分かる。また、短波長域で見ら れるアノマリ付近において、反復回数は増大するが、提案手 法を用いた場合、その増大は小さく抑えられていることが分 かる。

次に、Burton-Miller 法を用いた場合と PMCHWT 定式化 を用いた場合の提案する前処理法の性能の比較を行う。長 波長域において、反復回数は PMCHWT 定式化を用いた場 合の方が少なくなっているが、計算時間は全ての波長に対し て Burton-Miller 法を用いた場合の方が短くなっている。こ れは、Burton-Miller 法を用いた場合の前処理行列の逆(式 (44))を作用させる計算量が、PMCHWT 定式化を用いた場 合のそれ(式(40))と比べて少ないためである。

また、従来法を用いた場合に、Burton-Miller 法に基づい た場合の反復回数が少ない理由としては、式 (43) において、 $\alpha = 0$ とした場合、左辺に現れる作用素は「固有値の集積 点が3点 (1/2、1/2±c)の作用素+コンパクト作用素」と書 けるためであると考えられる。 $\alpha = -i/k^{(1)}$ が大きくないと き、前処理無し、あるいはスケーリング等の簡便な前処理法 を用いて式 (43)を離散化して得られる代数方程式を解いて も、効率はそれほど悪くない。しかしながら、実際には α の 値は非零であるため、従来法は超特異作用素 Nの影響を受 ける。したがって、超特異作用素の影響を消去した提案手法 の方が効率が良い。特に、係数行列の条件の悪化するアノマ リ付近においては、提案手法の有効性が顕著となる。

Fig. 7 The number of iteration for (F)GMRES.

Fig. 8 Elapse time.

4. 結言

本論文では、音場・弾性場連成問題における周期多重極法

の Calderon の式に基づく前処理の開発を行った。PMCHWT 定式化に基づく積分方程式及び Burton-Miller 法を用いた積 分方程式に対して、前処理行列の提案を行った。数値計算例 を通して、いずれの定式化を用いた場合も、従来の前処理法 を用いた場合に比べ、反復法の収束性を改善することができ た。特に、アノマリ付近においても、提案する前処理法が有 効であることを確認できた。また、Burton-Miller 法を用い た場合の方が、前処理行列の逆を作用させる計算量が少ない ため、PMCHWT 定式化を用いた場合よりも、全体の計算時 間が短くなることも分かった。

参考文献

- M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani. Acoustic band structure of periodic elastic composites. *Phys. Rev. Lett.*, Vol. 71, No. 13, pp. 2022–2025, Sep 1993.
- (2) Y. Otani and N. Nishimura. A periodic FMM for Maxwell's equations in 3D and its applications to problems related to photonic crystals. *Journal of Computational Physics*, Vol. 227, pp. 4630–4652, 2008.
- (3) 飯盛浩司,吉川仁,西村直志.3次元動弾性学における周期多重極法とその平面2周期構造による散乱問題への適用.応用力学論文集,Vol. 13, pp. 169–178, 8 2010.
- (4) 飯盛浩司,吉川仁,西村直志. Helmholtz 場-弾性場連成問題のための周期多重極法.計算数理工学論文集, Vol. 11, pp. 59–64, 2011.
- (5) O. Steinbach and WL Wendland. The construction of some efficient preconditioners in the boundary element method. Advances in Computational Mathematics, Vol. 9, No. 1, pp. 191–216, 1998.
- (6) K. Niino and N. Nishimura. Preconditioning based on Calderon's formulae for periodic fast multipole methods for Helmholtz' equation. *Journal of Computational Physics*, Vol. 231, pp. 66–81, 2012.
- (7) H. Isakari, K. Niino, H. Yoshikawa, and N. Nishimura. Calderon's preconditioning for periodic fast multipole method for elastodynamics in 3d. *International Journal for Numerical Methods in Engineering*, Vol. 90, pp. 484–505, 2012.
- (8) W.C. Chew, E. Michielssen, JM Song, and JM Jin. Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., 2001.
- (9) H. Estrada, V. Gómez-Lozano, A. Uris, P. Candelas, F. Belmar, and F. Meseguer. Sound transmission through plates perforated with two periodic subwavelength hole arrays. *Journal of Physics: Condensed Matter*, Vol. 23, p. 135401, 2011.