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Eigenvalue analysis for 2D acoustic problem
by BEM with block SS method
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This paper uses BEM and the block Sakurai-Sugiura Method (block SS method) to solve the eigen-

value problems governed by two-dimensional Helmholtz equation. The rank test is required in the

block-version of the algorithm of SS method. A threshold is employed for filtering out the small

singular values obtained by singular value decomposition (SVD). The singular values smaller than

its threshold can be neglected, while in some cases with different parameters for block SS method,

the singular values that should be neglected become comparatively large. A behavior of singular

values that can be cut off is investigated by numerical experiments.
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1. Introduction

The boundary element method (BEM) has not been a suitable

numerical method to solve eigenvalue problems obtained from the

Helmholtz equation and other similar differential equations, because

its high storage requirement and the nonlinearlity of the eigenvalue

problem. However, the appearance of the fast multipole BEM

(FMBEM)(1) has resolved the storage problem, as well as the high

computation cost for large scale problems. Also, contour integral

methods for nonlinear eigenvalue problem(2, 3, 4, 5, 6, 7) has been ac-

tively investigated recently. Hence, the BEM may also be used ef-

fectively for nonlinear eigenvalue problems now by combining both

approaches.

The BEM requires the fundamental solution of the Helmholtz

equation for analyses. The parameter, wave number k, for which

eigenvalues are obtained, are involved in the transcendental func-

tions of the fundamental solutions. The components of the coef-

ficient matrix related to the discretized boundary integral equation

are calculated by integrating the fundamental solution for each el-

ement, thus the coefficient matrix of the system of linear algebraic

equations implicitly involves the wave number in its components.

Therefore, we could not use the standard eigenvalue solvers for the

nonlinear eigenvalue problem resulting from using BEM.

Recently, methods based on contour integral have been proposed

for the solutions of nonlinear eigenvalue problems and been actively

applied to various problems. They can extract the eigenvalues lo-

cated in a certain region enclosed with a contour of the complex

Received Oct. 4, 2011, accepted Nov. 2, 2011

plane. Also, one version of the methods, the block SS method(4),

can give the multiplicities of the eigenvalues at the same time.

In this paper, we treat a plane acoustic problem governed by the

Helmholtz equation and try to calculate the eigenvalues by using

BEM and the block SS method. Singular values of the Hankel

Matirices are used for their rank tests to determine the number of

eigenvalues included in the defined contour on the complex plane.

The behavior of the singular values versus N of the N -point trape-

zoidal rule that evaluate the path integral is studied. The threshold

used to distinguish between the large singular values and negligi-

ble singular values is sought. Numerical examples are shown to

demonstrate the overall procedure.

2. Formulation

We consider a plane acoustic problem in time-harmonic vibration

as the physical phinomenon governed by the Helmholtz equation:

r
2p.x/ C k2p.x/ D 0 in D; (1)

where p.x/ is the sound pressure at a point x in a homogeneous

domain D in the plane, r2 is the Laplace’s operator, and k is the

wave number.

Equation (1) can be transformed to an integral representation by

using the following fundamental solution (2) of the two-dimensional

Helmholtz equation:
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where x and y are two different points in D, r is the distance be-

tween x and y, and H
.1/
0 denotes the zero order Hankel function of



the first kind.

Then, the sound pressure at an arbitrary point in D can be related

to the sound pressure and its normal derivative on the boundary by
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where n denotes the outward normal to the boundary. The boundary

integral equation is obtained by taking the limit y 2 D ! y 2 S ,

as follows:
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where cy D
1
2 if y is located at a smooth part of the boundary S .

Equation (4) can be converted to a regularized form, which is

used in the numerical computations in this paper, as follows:Z
S
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where P �.x; y/ is the fundamental solution of Laplace’s equation.

Applying the the homogenous boundary condition and using quadratic

isoparametric element for discretizing Eq.(5), we obtain a system of

linear algebraic equations, as follows:

A.k/x D 0; (6)

where A.k/ is a matrix whose components are obtained by evaluat-

ing the integrals either of p� or @p�=@n, and x is a column vector

comprising unknown values at the nodes on the boundary.

The Block SS method can extract the eigenvalues of the nonlin-

ear eigenvalue problem (6) lying inside a Jordan curve � on the

complex plane, and can keep the multiplicity of the eigenvalues less

than l that is the number of the column of the arbitrary nonzero

matrices V and U, which are used for computation of the moment

matrices

Mm D
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2� i

Z
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UH A.z/�1Vzmdz; (7)

where in the present paper we take U D V, and ‘i’ is the imagi-

nary unit. This contour integral can be evaluated by using N -point

trapezoidal rule, then two Hankel matrices H<
Kl

and HKl can be

constructed by the moment matrices (7)

HKl D ŒMiCj �2�Ki;j D1 (8)

H<
Kl D ŒMiCj �1�Ki;j D1; (9)

where MiCj �2 and MiCj �1 are l � l i Cj �2 and i Cj �1 order

moment matrices respectively, i; j D 1; 2; � � � ; K. In SS method

K is the dimension of Hankel matrices and in the block version the

dimension of Hankel matrices is Kl because moment becomes a

l � l matrix.

Therefore, by solving eigenvalues of the matrix pencil:

H<
Kl � kHKl ; (10)

Fig.1 A square region, the boundary condition, and boundary el-

ements (40 quadratic elements are used. The solid symbols are the

edge nodes and the open symbols are the middle nodes of the ele-

ments)

we can obtain the original eigenvalues k1; k2; � � � ; kKl contained

in the closed curve � . After the Hankel matrices being constructed,

the singular value decomposition of HKl is carried out to make a

rank test, as

HKl D CEH ; (11)

where C and E are complex unitary matrices, is a diagonal matrix

with nonnegative real numbers at its diagonal elements.

Then original eigenvalue problem can be cast to a standard one

by computing the eigenvalues of the matrix

B D CH H<
KlE

�1: (12)

At the step of SVD, the rank test is carried out, and we attempt to

find a suitable threshold value for cutting off sufficiently small, and

thus negligible, singular values. The behavior of the singular values

against N is also investigated in (8).

3. Numerical example

Consider a simple 2D square domain with sides in 1 [m] as shown

in the Fig.1. Neumann boundary condition are assumed on all the

edges. The theoretical eigenvalues of this problem are given by

ke D �

s�
tx
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�
ty
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�2

;

.tx D 0; 1; 2; 3; � � � ; ty D 0; 1; 2; 3; � � � /: (13)

When Lx D Ly D 1, the closed form of the eigenmodes are given

by

Pe D A cos.tx�x/ cos.ty�y/;

.tx D 0; 1; 2; 3; � � � ; ty D 0; 1; 2; 3; � � � /: (14)
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Fig.2 The singular values for fixed parameter K D 4, l D 10 with

N D 128.

We discretize the boundary into 40 quadratic isoparametric el-

ements and employ the BEM based on Eq.(5). We calculate the

eigenvalues within a circular integral path � D  C �ei� , where

 D .7:5; 0/ and � D 5:5, with K D 4 and l D 10 that are the pa-

rameters of the block SS method. Assuming that there are no rank

drops in Hankel matrices, the number of eigenvalues located within

the integral path becomes smaller than K � l . In this case, the max-

imum number of eigenvalues we can calculate within the integral

path is 40. We observe in Fig.2 that there is a jump in the magni-

tude of the normalized singular values between 10�5 � 10�7 with

N D 128. Therefore, we may have singular values that are suffi-

ciently small and can neglect. For a smaller number of N , we do

not observe such a gap. Hence, we make an attempt to calculate

the normalized singular values by changing N . The matrix pen-

cil (10) is equivalent to the matrix pencil formed by 0-th order and

first-order moment(3, 8), and thus, SS method can detect the rank of

HKl with sufficiently large number for N . Assuming Kl > m0,

where m0 is the number of eigenvalues located within the circular

integral path, the behavior of the singular values against N is shown

in Fig.3. We find that a separation of the singular values appears,

and for N > 100 we do not observe the decrease of small singular

values, thus we have sufficient gaps between the larger and smaller

singular values. In the Figure, the open triangular symbols represent

the larger singular values, while the open circular symbols represent

the smaller ones. If the threshold ı of the singular value is chosen

within the separation range 10�5 � 10�7 to filter out the normal-

ized singular values �=�max, the singular values smaller than ı can

be cut off. Using the significant singular values obtained in this

way, we are able to calculate the eigenvalues. But the eigenvalues

of the present problems must always lie on the real axis. There-

fore, the eigenvalues having large imaginary part are regarded as

ghosts and can be removed from the eigenvalues. In Table 1 are
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Fig.3 The separation of singular values.

‒4

0

4
Im

eigenvalue
integration path

84 12
Re

Fig.4 The circular integral path and the obtained eigenvalues.

shown the obtained eigenvalues of the wave numbers for N D 128

by setting the tolerance threshold value of the imaginary part of the

eigenfrequency as 0.05. The number of eigenvalues finally obtained

inside the integral path is 18 as shown in the Table. All the values

have reasonable accuracy. Fig.4 shows the locations of the obtained

eigenvalues in the circular integral path by using rhombus symbols.

The eigen-modes of the interior domain can be computed by us-

ing the eigen-pairs obtained by the SS method. The eigenvalues

and eigenvectors are substituted into integral representation (3) to

calculate the sound pressure amplitude at internal points, and thus

obtained eigen-modes corresponding to the eigenvalues
p

2� and

2
p

2� are shown in Figs.5 and 6, respectively. Both of the results

agree well with the theoretical eigen-modes.

4. Conclusion

The block SS method based on contour integrals has been em-



Table 1 Numerical results of the eigenvalues and rela-

tive errors.

i tx ty ki Relative error [%]

1 1 0 3:1415006 0:00293

2 0 1 3:1418902 0:00947

3 1 1 4:4427825 0:00226

4 2 0 6:2832447 0:00095

5 0 2 6:2876869 0:07165

6 2 1 7:0205457 0:06077

7 1 2 7:0269803 0:03083

8 2 2 8:8844560 0:01474

9 3 0 9:4229509 0:01939

10 0 3 9:4280028 0:03422

11 3 1 9:9334976 0:01098

12 1 3 9:9352245 0:00640

13 2 3 11:3272761 0:00091

14 3 2 11:3287460 0:01388

15 0 4 12:5666751 0:00242

16 4 0 12:5668878 0:00412

17 1 4 12:9536691 0:00425

18 4 1 12:9539116 0:00612
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Fig.5 The obtained eigenmode corresponding to
p

2� .

ployed to solve nonlinear eigenvalue problems formulated based

on BEM for the two-dimensional Helmholtz equation. Sufficiently

small singular values of the Hankel matrix are neglected. The thresh-

old of the singular value for filtering out the negligible normalized

singular values are determined by investigating the normalized sin-

gular values obtained by increasing the number of partitions N used

to evaluate the path integral by N -points trapezoidal rule. A numer-

ical example has shown that the present approach can give accurate

eigenvalues and eigenvectors.
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