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Vibration analysis of conical shell based on wavelet

finite element method
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A wavelet finite element method is proposed for the vibration analysis of conical shell.

The scaling functions of B-spline wavelet on the interval (BSWI) is employed as the multi-

scale interpolating bases. According to Hamilton’s principle, the free vibration motion

equations of BSWI thin truncated conical shell element will be obtained. The fundamental

cause of the good performance of BSWI bases lies in that the BSWI scaling functions have

the advantage of high approximation precision. Some numerical examples verify the main

advantage of the proposed method is the time savings due to the substantially reduced

degrees of freedom (DOFs) of BSWI method.
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1. Introduction

Conical shell have a wide range of engineering applica-

tions, particularly in aerospace, marine and structural en-

gineering. Many structures comprise at least a few compo-

nents with this geometrical profile, such as turbine blades

or aircraft fuselages. In practice, such components can be

subjected to varying levels of dynamic stresses. However,

it is difficult to obtain the closed-form solutions for coni-

cal shells with various boundary conditions. Numerical or

approximate methods have been widely used to obtain the

approximate solutions. For some specific situations, such as

in the cases of stress concentration and high-frequency re-

sponses, traditional numerical method have drawbacks and

numerously unknown DOFs will be solved. Therefore, new

and reliable ways are still being developed [1-2].

Different kind of wavelet numerical methods, such as wavelet

Galerkin method [3-6], wavelet finite element method [7-9]

and wavelet boundary element method, etc., have proposed

to solve Partial Differential Equations (PDEs) and engineer-

ing problems [10-13]. Wavelet numerical method can be

viewed as a method in which the approximation functions

are defined by the scaling or wavelet functions. In summary,

the wavelet numerical method embody two prominent advan-

tages [14-17]. The one is that the scale is directly upgraded

using the so called two scale equations, namely, the scaling

functions at different scale are employed directly to form the
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multi-scale approximation bases. The other is that the nest-

ing approximation is performed using the lifting relationship

between scaling and wavelet spaces, i.e. the scaling func-

tions and wavelets at a certain scale are adopted to form

the scaling function at the next scale. However, the sec-

ond advantage is suit to form the adaptive wavelet Galerkin

method within one element and this is very difficult to joint

this adaptive element [3-6, 9].

Recently, two-dimensional Daubechies wavelet-based ele-

ment for a thin plate-bending problem had been constructed

in Ref. [14]. However, for Daubechies wavelet lacking of ex-

plicit expressions, present numerical integrals cannot provide

desirable precision. Therefore, B-spline wavelet on the in-

terval (BSWI) have been employed to construct 1D wavelet-

based elements [15], plane elastomechanics and Mindlin plate

elements [16] by using the scaling functions of BSWI. It is

worth to point out that the BSWI scaling functions is modi-

fied by B-spline functions to served as complete bases in finite

interval. Therefore, the stability and precision of BSWI el-

ements are better than those of spline wavelet [17] or spline

methods .

The main objective of this paper is to develop a novel vi-

bration analysis method for thin conical shell using BSWI

bases (scaling functions). This is also the extension of the

present wavelet-based finite element method from static anal-

ysis to the dynamic analysis of shell structures. As we know,

it need to be equipped with two degrees of freedom (DOFs)



at the edge of wavelet-based element for the Hermitian in-

terpolating , whereas it only need one DOFs for Lagrangian

interpolating. We cannot using the same wavelet bases to

construct the hybrid interpolating element. Therefore, we

propose the hybrid scheme using both BSWI2j and BSWI4j

scaling functions, i.e., Φ2j and Φ4j . According to the ki-

netic energy and strain energy of the element, the Hamilton

principle is employed to obtain the equations of vibration

motion.

The outline of this paper is as follows. In section 2, we

present a brief review of semi-orthogonal B-spline wavelet

on the interval [0,1]. In section 3, BSWI scaling functions

are extended to analyze the vibration of thin conical shell.

Some numerical simulations and comparative investigation

are presented in section 4.

2. BSWI scaling functions

Multi-resolution analysis (MRA) of BSWI on the interval

[0, 1] is given by Chui, Quak and Goswami [18-19]. Sup-

pose m and j are the order and scale of BSWI respectively,

BSWImj scaling functions φj
m,k(ξ) can be calculated by

φj
m,k =


φl

m,k(2j−lξ), k = −m + 1, · · · ,−1

φl
m,2j−m−k(1 − 2j−lξ), k = 2j − m + 1, · · · , 2j − 1

φl
m,0(2

j−lξ − 2−lk)k = 0, · · · , 2j − m

(1)

where BSWIm0 scaling functions are shown in Refs.[9-10].

Therefore, all the scaling functions Φmj on the interval [0,

1] at the lower resolution approximation space Vj are repre-

sented by

Φmj = {φj
m,−m+1(ξ), φ

j
m,−m+2(ξ), · · · , φj

m,2j−1
(ξ)} (2)

Obviously, there are m − 1 boundary scaling functions at

each end point and 2j − m + 1 inner scaling functions. The

total scaling functions at interval [0, 1] are 2j + m − 1. Fig.

1 shows all the scaling functions Φ43 and Φ23 for BSWI43

and BSWI23, respectively.

3. Vibration analysis of thin conical shell

For an axisymmetric conical shell, the displacement of a

point on the neutral surface is uniquely determined by two

components u and w in the tangential and normal direc-

tions, respectively. Fig.2 shows the layout of nodes and the

corresponding degrees of freedom (DOFs) for thin conical

shell. u − w and u − w are the local and global coordi-

nate systems, respectively. The elemental length is le . If

u and w are interpolated by BSWI2j and BSWI4j respec-

tively, each element possesses n(n = 2j + 1) nodes. Both

the edge node 1 and n are equipped with three DOFs, i.e.,

ui, wi, βi(i = 1, 2j + 1). However, at each inner node, only

the axial and radial displacements will be prescribed, i.e.,
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Fig. 1 BSWI scaling functions Φ43 and Φ23

ui, wi(i = 2, · · · , 2j). Therefore, the total DOFs of element

are 2j+1 + 4.

The kinetic energy Te and strain energy Ue of the complete

element are [20]

Te =
1

2

∫
Ωe

ρ{(du
dt

)2 + (
dw

dt
)2}dΩe (3)

and

Ue =
1

2

∫
Ωe

(ε(m))TD(m)ε(m))dΩe +
1

2

∫
Ωe

(ε(b))TD(b)ε(b))dΩe

(4)

respectively, where (m) denotes membrane situation and (b)

denotes bending situation, Ωe is the elemental solving do-

main. The generalized strain and elasticity matrices are

ε(m) =

{
εs

εθ

}
=

{
du
ds

1
r
(u sin α + w cos α)

}
(5)

ε(b) =

{
κs

κθ

}
=

{
− d2w

ds2

− sin α
r

dw
ds

}
(6)

D(m) = k0

[
1 µ

µ 1

]
(7)

D(b) = D0

[
1 µ

µ 1

]
(8)

in which k0 = Et/(1 − µ2), D0 = Et3/(12(1 − µ2)), µ is

Possion’s ratio, E is Young’s modulus, t is the thickness of

shell, r is the tangential coordinate of a point on the neutral

surface, and α is the cone angle.



Fig. 2 BSWI thin truncated conical shell element

In order to impose the continuity and compatibility of

the displacements at the interface between neighboring el-

ements, and to introduce the boundary condition conve-

niently, the stiffness and mass matrices should be trans-

formed from wavelet space into physical space. Therefore,

we introduce different type of transformation matrices [15].

u and w can be interpolated independently by BSWI2j

and BSWI4j scaling functions asu = Φ2jT
e
mue

w = Φ4jT
e
bw

e
(9)

where interpolation scaling functions areΦ2j = {φj
2,−1(ξ), φ

j
2,0(ξ) · · · , φj

2,2j−1
(ξ)}

Φ4j = {φj
4,−3(ξ), φ

j
4,−2(ξ) · · · , φj

4,2j−1
(ξ)}

(10)

The corresponding transformation matrices are [15]Te
m = ([ΦT

2j(ξ1),Φ
T
2j(ξ2), · · · ,ΦT

2j(ξn)]T)−1

Te
b = ([ΦT

4j(ξ1),
1
le

dΦT
4j(ξ1)

dξ
, · · · ,ΦT

4j(ξn−1),
1
le

dΦT
4j(ξn)

dξ
]T)−1

(11)

and also the corresponding DOFs in local coordinate system

areue = {u(s1), u(s2), · · · , u(sn)}T

we = {w(s1),
dw(s1)

ds
, w(s2), w(s3), · · · , w(sn−1), w(sn), dw(sn)

ds
}T

(12)

Substituting Eqs.(5)∼ (11) into Eqs.(3) and (4), accord-

ing to Hamilton’s principle [20] to the Lagrangian function

Ue−Te, the equations of free vibration motion of BSWI thin

truncated conical shell element is obtained as

(

[
Ke,1 Ke,2

Ke,3 Ke,4

]
−ω2

[
Me,1 0

0 Me,2

]
)

[
ue

we

]
= 0 (13)

where Ke,1 ,Ke,2, Ke,3, Ke,4, Me,1, and Me,2 are

Ke,1 = k0{A11
1 + µ sin α(A01

1 + A10
1 ) + sin2 αA00

1 } (14)

Ke,2 = k0{µ cos αA10
12 + sin α cos αA00

12} (15)

Ke,3 = (Ke,2)T (16)

Ke,4 = D0{A22
2 +µ sin α(A21

2 +A12
2 )+sin2 αA11

2 }+k0 cos2 αA00
2

(17)

Me,1 = 2πleρt(Te
m)T[

∫ 1

0

rΦT
2jΦ2jdξ](T

e
m) (18)

Me,2 = 2πleρt(Te
b)

T[

∫ 1

0

rΦT
4jΦ4jdξ](T

e
b) (19)

in which ρ is the density of the material, ω is the angular

frequency, t is the thickness of the shell. The radius r has

to be expressed as a function of s, and the integral terms in

Eqs. (14) ∼ (17) are calculated by

A11
1 =

2π

le
(Te

m)T[

∫ 1

0

r
dΦT

2j

dξ

dΦ2j

dξ
dξ]Te

m (20)

A01
1 = 2π(Te

m)T[

∫ 1

0

ΦT
2j
dΦ2j

dξ
dξ]Te

m (21)

A10
1 = (A01

1 )T (22)

A00
1 = 2πle(T

e
m)T[

∫ 1

0

1

r
ΦT

2jΦ2jdξ]T
e
m (23)

A10
12 = 2π(Te

m)T[

∫ 1

0

dΦT
2j

dξ
Φ4jdξ]T

e
b (24)

A00
12 = 2πle(T

e
m)T[

∫ 1

0

ΦT
2jΦ4jdξ]T

e
b (25)

A00
2 = 2πle(T

e
b)

T[

∫ 1

0

1

r
ΦT

4jΦ4jdξ]T
e
b (26)

A22
2 =

2π

l3e
(Te

b)
T[

∫ 1

0

r
d2ΦT

4j

dξ2

d2Φ4j

dξ2
dξ]Te

b (27)

A21
2 =

2π

l2e
(Te

b)
T[

∫ 1

0

d2ΦT
4j

dξ2

dΦ4j

dξ
dξ]Te

b (28)

A12
2 = (A21

2 )T (29)

A11
2 =

2π

le
(Te

b)
T[

∫ 1

0

1

r

dΦT
4j

dξ

dΦ4j

dξ
dξ]Te

b (30)

The elemental physical DOFs in the local coordinate sys-

tem are

ae = {u1, w1,
dw1

ds
, u2, w2, · · · , un−1, wn−1, un, wn,

dwn

ds
}T

(31)



and the elemental physical DOFs in the global coordinate

system are

āe = {ū1, w̄1,
dw̄1

ds
, ū2, w̄2, · · · , ūn−1, w̄n−1, ūn, w̄n,

dw̄n

ds
}T

(32)

The DOFs transformation equations from the global co-

ordinate system to the local coordinate system can be ex-

pressed as

ae = Seāe (33)

where the transformation matrix is

Se =



λ1

λ2

. . .

λn−1

λn


(34)

in which the transformation sub-matrices for edge node are

λi =


cos α sin α 0

− sin α cos α 0

0 0 1

 (i = 1, n) (35)

and the transformation submatrices for inner node are

λi =

[
cos α sin α

− sin α cos α

]
(i = 2, 3, · · · , n − 1) (36)

According to the elemental physical DOFs (see Eq. (31)),

the location of free vibration motion equations Eq.(13) can

be changed and the corresponding elemental stiffness matrix

Ke and mass matrix Me will be obtained. Therefore, in

global coordinate system, the free vibration frequency equa-

tions is

|(Se)TKe(Se) − ω2(Se)TMe(Se)| = 0 (37)

4. Numerical simulation

In order to verify the validity and advantages of the present

vibration analysis method using BSWI truncated conical shell

elements in the problems of axisymmestric shells, one typ-

ical numerical example is illustrated. The combination of

BSWI scaling functions Φ23 of BSWI23 and Φ43 of BSWI43

(it can be simply abbreviated as BSWI2343 bases) to inter-

polate membrane and bending situations respectively. For

simplicity, the units of all parameters are omitted.

A combined conical shell with two different boundary con-

ditions, i.e., clamped at the left edge and at both of the left

and right edges. The geometry is shown in Fig.3, the geom-

etry and material parameters are assumed as L = 50, t = 1,

α = 15◦, r = 50, E = 105, and ρ = 1, respectively.

We adopt 8 BSWI2343 thin truncated conical shell ele-

ments with 139 DOFs) and 240 traditional elements with 964

Fig. 3 Clamped combined conical shell

DOFs (SHELL 61 element in commercial software ANSYS,

where each element has two points and each point equipped

with three displacements, i.e., u, v and w) and one rotation

β) respectively to analyze the shell. The results for the fre-

quencies of the shell clamped at the left edge and at both

the left and right edges are shown in Tables 1 and 2, respec-

tively. The small relative error indicates a good performance

of BSWI scaling functions for the dynamic analysis of coni-

cal shell. Figs. 4 and 5 show some mode shapes calculated

by BSWI method (different type of dots show in Figs. 4 and

5) and those by the traditional elements (solid lines show in

Figs. 4 and 5) for the shell clamped at the left edge and at

both the left and right edges, respectively. In view of the

overall behavior, the mode shapes computed by the present

method are in reasonably good agreement with those by the

traditional method. Moreover, to obtain the same approx-

imation precision, the DOFs of traditional SHELL 61 ele-

ment have to be almost 7 times of that of the 8 BSWI2343

thin truncated conical shell elements. It is worth pointing

out that because only two displacement u and w, and one

rotation β are considered in the present method, some orders

of natural frequencies and mode shapes along the direction

v are not available by the present method.

The numerical results presented in this paper demonstrated

the validity of the present method. The main advantage of

the proposed method is the time savings due to the reduced

DOFs of BSWI method. The fundamental cause of the good

performance of BSWI bases lies in the BSWI scaling func-

tions have the advantages of high approximation precision.

5. Conclusions

The vibration analysis method for the thin conical shells

are successfully proposed using the combination of BSWI2j

and BSWI4j scaling functions Φ2j and Φ4j . Numerical ex-

ample testified the validity of wavelet-based method . The

proposed wavelet-based vibration analysis method can also



Table 1 Frequencies comparison of BSWI and traditional

elements [Hz]

Order Shell61 element BSWI element Error/%

1 0.40944 – –

2 0.6401 0.64016 0.009

3 0.79498 0.79543 0.057

4 0.87802 0.87881 0.090

5 0.94506 0.94548 0.044

6 0.99285 0.99324 0.039

7 1.044 1.0454 0.134

8 1.0772 1.0781 0.084

9 1.1427 1.1443 0.140

10 1.2659 1.269 0.245

11 1.4191 1.4232 0.289

12 1.4379 – –

13 1.5998 1.6059 0.381

14 1.843 1.8516 0.467

15 2.1153 2.1263 0.520

16 2.3989 – –

17 2.4304 2.4438 0.551

18 2.4808 2.4859 0.206

19 2.8098 2.8295 0.701

20 3.1629 3.1902 0.863

be extended to the analysis of dynamic response or wave

propagation in thin conical shell.
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