# 複素逆 Laplace 変換の数値計算における注意

# REMARKS ON NUMERICAL COMPUTATIONS OF THE COMPLEX INVERSE LAPLACE TRANSFORM

藤原 宏志<sup>1)</sup>

#### Hiroshi FUJIWARA

1) 京都大学大学院 情報学研究科 (〒 606-8501 京都市左京区吉田本町, E-mail: fujiwara@acs.i.kyoto-u.ac.jp)

We give a few remarks on numerical computations of the inverse Laplace transform based on the Bromwich integral, and propose practical algorithms for them. In the case of Hosono's inversion method as an example we discuss treatment of multi-valued complex functions and the numerical instability. Proposed algorithms are applicable to other inversion methods based on the Bromwich integral and numerical methods involved with complex functions.

*Key Words*: 逆 Laplace 変換, Bromwich 積分, 複素函数の多価性, 数値的不安定性, 多 倍長計算

1. Introduction

本論文では,Bromwich 積分に基く複素逆 Lpalace 変換の 数値計算における複素函数の多価性の取り扱い,および数値 的不安定性について,細野の数値逆変換スキームを例に論 じる.

Laplace 変換

$$\mathcal{L} f(s) = F(s) = \int_0^\infty e^{-st} f(t) \, dt$$

は,基本的な解析手法として,力学,工学,情報学,数理経 済学など広範な分野で現れる.同時にその逆変換 $f = \mathcal{L}^{-1}F$ の扱いも重要となり<sup>(1)</sup>,幾つかの数値計算法が提案されて いる<sup>(2,3,4)</sup>.これら逆変換は大別して,F(s)のs > 0にお ける値を直接的に利用する実逆変換<sup>(6)</sup>,若しくは Bromwich 積分に基く複素逆変換に分類される.

原像 f が,正数 M > 0 に対して  $|f(t)| \le e^{Mt}$  を満たす とする.このとき,f(t)の Laplace 変換像 F(s) は複素平 面内の  $\operatorname{Re} z > M$  における正則函数 F(z) に解析接続され,  $\sigma > M$  に対して Bromwich 積分による逆変換

$$f(t) = \frac{1}{2\pi i} \lim_{T \to \infty} \int_{\sigma - iT}^{\sigma + iT} e^{tz} F(z) dz$$
(1)

が成立する <sup>(2)</sup>.

Bromwich 積分 (1) の数値計算における問題点として, *F*(*z*) に現れる多価函数の扱いおよび数値的不安定性が挙げられ る.次節では (1) に基づく複素逆 Laplace 変換スキームのひ とつである細野の方法を述べる.3節および4節では,細野の方法を例として,上述の問題点について数値例とともに論じ,対処法を提案する.

## 2. 細野の方法

Bromwich 積分 (1) の数値スキームの構成において,細野は, $\sigma_0 > M$ をとって核函数  $e^s$ の近似

$$e^{s} \approx E(s, \sigma_0) = \frac{e^{\sigma_0}}{2\cosh(\sigma_0 - s)}$$

を導入し,(1)に現れる積分を留数定理によって計算することを提案した $^{(7)}$ .その際, $T \to \infty$ の極限操作を打ち切ることで, $E(tz,\sigma_0)$ の特異点のうち有限個の

$$z_n = \frac{1}{t} \left\{ \sigma_0 + \left(n - \frac{1}{2}\right) \pi i \right\}, \quad n = 1, 2, \dots, N$$

において F を評価する.さらに数値計算の効率化のため, Euler 加速の利用も提案されている.これらにより,細野に よる近似逆変換の数値スキームは次で与えられる.

$$f(t) \approx f_{\sigma_0,N}(t) = \frac{e^{\sigma_0}}{t} \left( \sum_{n=1}^{k-1} F_n + \frac{1}{2^{k+1}} \sum_{\nu=0}^{\mu} A_{\mu,\nu} F_{k+\nu} \right).$$

ここで,  $N = k + \mu$  は打ち切りのパラメータ,  $\mu$  は Euler 加速に現れるパラメータであり, また,

$$F_n = (-1)^n \operatorname{Im} F(z_n),$$
$$A_{\mu,\mu} = 1, \quad A_{\mu,\nu-1} = A_{\mu,\nu} + \begin{pmatrix} \mu + 1 \\ \nu \end{pmatrix},$$

である.

<sup>2010</sup> 年 9 月 7 日受付, 2010 年 11 月 5 日受理

 $<sup>\</sup>P {\rm Dedicated}$  to the memory of Prof. Masataka TANAKA



Fig. 1 Numerical results using the built-in square root function for the example (2) ( $\sigma_0 = 5, k = 40, \mu = 40$ )

#### 3. 複素函数の多価性の数値計算での扱い

複素逆 Laplace 変換の数値計算において,像函数 F は, Bromwich 積分における正則函数を表現するように実装され なければならない.特に F(z) が平方根や対数などの多価函 数を含む場合,それらは連続函数となるように分枝(branch) を選ぶ必要がある.一方,通常のプログラミング言語におい ては複素数型の平方根函数や対数函数の分枝は言語仕様で決 められており,それ以外の分枝が必要となる場合には注意を 要する.

例として, Laplace 変換像

$$F(s) = \frac{1}{\sqrt{s^3}} \exp\left(-\frac{1}{s}\right), \quad s > 0 \tag{2}$$

を考える.ただしF(0) = 0とする.このFに対して原像は

$$\mathcal{L}^{-1}F(t) = \frac{1}{\sqrt{\pi}}\sin 2\sqrt{t}$$

である.この像函数 (2) の実装例としては, FORTRAN の 組み込みの複素函数 SQRT をもちいた

```
FUNCTION F(z)
COMPLEX*16 :: F
COMPLEX*16, INTENT(IN) :: z
F = EXP( -1.0D0/z ) / SQRT( z*z*z )
END FUNCTION F
```

もしくは C++ 言語の組み込みの複素函数 sqrt もちいた

```
complex<double> F(const complex<double> z){
  return exp( -1.0/z ) / sqrt( z*z*z );
}
```

が考えられる.ただし F(0)の評価は細野の方法で現れないため,ここでは省略している.

この実装例による数値計算結果を Fig. 1 に示す. 図中, 記 号 + は数値計算結果を表し, 破線が原像  $\mathcal{L}^{-1}F$  を表してい る. 図より, 組み込み函数の直接的な適用は, Bromwich 積 分での利用においては適当でないことがわかる. 例 (2) に現れる複素平方根の Bromwich 積分における分枝 について考えるため, 複素平面内の次の領域を考える.

$$D_1 = \{ z \in \mathbb{C} ; 0 < \arg z < \pi/3 \}, D_2 = \{ z \in \mathbb{C} ; \pi/3 < \arg z < \pi/2 \}.$$

Fの評価点  $z_n$ のうち, $D_1$ に含まれる点については $0 < \arg(z_n^3) < \pi$ が成立する.実軸からの Fの解析接続を考慮 すると, $w_n = \sqrt{z_n^3}$ は $0 < \arg w_n < \pi/2$ を満たすもので あり,これは FORTRAN や C++ 言語の組み込みの複素平 方根と一致する.次に, $D_2$ 内の評価点 $z_n$ に対しては $\pi < \arg(z_n^3) < 3\pi/2$ であり, $D_1$ から $D_2$ へと至る積分路の近傍 での Fの正則性により, $w'_n = \sqrt{z_n^3}$ は $\pi/2 < \arg w'_n < 3\pi/4$ のものが選ばれる.しかし,FORTRAN や C++ 言語の仕 様により,組み込みの複素平方根函数による戻り値 $w''_n$ は $-\pi/2 < \arg w''_n < -\pi/4$ となり, $w'_n$ と一致しない.従って 上述の実装例は,Bromwich 積分への適用において連続函数 を表さず,Fig.1の不一致が生じる.

これに対し, F が正則函数を表すように多価函数の分枝 を選択するアルゴリズムとして,次を提案する.本アルゴ リズムは,F の評価点で前後するものが充分に近ければ, Bromwich 積分の正則函数の近似に相当する値を返す.また 本アルゴリズムは,以下に示す実装例も含めて,積分路が双 曲線もしくは放物線である場合<sup>(8)</sup>にも適用可能である.さ らに複素数を含む一般的な数値計算アルゴリズムにおいても 本手法は有用である.

Assumption and Notation Fの評価点は, t ごとに

 $\{z_1^+, z_2^+, \dots, z_p^+\} \subset \{\operatorname{Im} z \ge 0\} \text{ with } \operatorname{Im} z_n^+ \le \operatorname{Im} z_{n+1}^+, \\ \{z_1^-, z_2^-, \dots, z_q^+\} \subset \{\operatorname{Im} z \le 0\} \text{ with } \operatorname{Im} z_n^- \ge \operatorname{Im} z_{n+1}^-,$ 

と順序づけられており, Fは $F(z_1^+), F(z_2^+), \dots, F(z_p^+)$ , 続けて $F(z_1^-), F(z_2^-), \dots, F(z_q^-)$ の順で評価されるものとする.

## Algorithm

- z<sub>0</sub><sup>+</sup> = Re z<sub>1</sub><sup>+</sup> とする . *F* に現れる平方根と対数に対し , z<sub>0</sub><sup>+</sup> における値を , 組み込みの函数を利用して実数値 函数として求める .
- 2.  $z_n^+, 1 \le n \le p$  に対し, F に現れる平方根,対数の値 を Newton 法により求める.この Newton 法の初期値 には, $z_{n-1}^+$  における対応する平方根,対数の値を利用 する.それらの結果から  $F(z_n^+)$  の値を評価する.
- 3.  $\{z_1^-, z_2^-, \dots, z_q^-\}$ においても同様にFを評価する.

**Implementation**  $z \in \mathbb{C}$ の平方根を求めるために, $g(w) = w^2 - z$  に対する Newton 法を用いての本アルゴリズムの実 装例を示す.対数  $\log z$  については, $g(w) = e^w - z$  に対する Newton 法により,同様の実装が可能である.これらの g(w)に対する Newton 法の結果は,平方根函数,対数函数に対し, 適当な分枝を与える.

```
FUNCTION SQRT_br(z, w0)
  IMPLICIT NONE
  COMPLEX*16 :: SORT br
  COMPLEX*16, INTENT(IN) :: z
  COMPLEX*16, INTENT(INOUT) :: w0
 REAL*8, PARAMETER :: TOL = 1.0D-15
  COMPLEX*16 :: w
  IF( AIMAG(z) == 0 ) THEN
   w0 = SQRT(REAL(z))
   SQRT_br = w0
   RETURN
  END IF
  IF( AIMAG(wO) == O ) THEN
   w0 = SQRT(REAL(z))
 END IF
 DO
   w = w0
   w0 = 0.5D0 * (w*w + z) / w
   IF ( ABS((w0-w)/w0) < TOL ) EXIT
  END DO
 SQRT_br = w0
END FUNCTION SQRT_br
```

上述の平方根をもちいて,(0)(2)に示すF(z)は,(0)に次のように実装される.

```
FUNCTION F(z)
  IMPLICIT NONE
  COMPLEX*16 :: F, SQRT_br
  COMPLEX*16, INTENT(IN) :: z
  COMPLEX*16, SAVE :: a = 0.0D0
  COMPLEX*16, SAVE :: zz = 0.0D0
  IF ( \texttt{AIMAG}(\texttt{z}) * \texttt{AIMAG}(\texttt{zz}) < 0.0D0 ) THEN
   a = REAL(z)
  END IF
  IF ( (AIMAG(zz) > 0.0D0) .AND. &
       (AIMAG(zz) > AIMAG(z)) ) THEN
   a = REAL(z)
 END IF
  IF ( (AIMAG(zz) < 0.0D0) .AND. &
       (AIMAG(zz) < AIMAG(z)) ) THEN
    a = REAL(z)
 END TF
 77 = 7
 F = EXP(-1.0D0/z) / SQRT_br(z*z*z, a)
END FUNCTION F
```

同様に C++ 言語における本アルゴリズムの実装例を示す.

```
complex<double> sqrt_br(const complex<double> z,
                        complex<double> &w0)
ſ
  if(imag(z) == 0)
    return w0 = sqrt( real(z) );
  if(imag(w0) == 0)
    w0 = sqrt( real(z) );
  complex<double> w;
  const double TOL = 1e-15:
  do {
    w = w0;
    w0 = 0.5 * (w*w + z) / w;
  } while( abs( (w0-w)/w0 ) > TOL);
 return w0;
}
complex<double> F(const complex<double> z)
Ł
  static complex<double> a = 0;
  static complex<double> zz = 0;
  if(imag(z)*imag(zz) < 0)
    a = real(z);
  if( (imag(zz) > 0) && (imag(zz) > imag(z)) )
    a = real(z);
  if( (imag(zz) < 0) && (imag(zz) < imag(z)) )
   a = real(z);
 zz = z;
  return exp(-1.0/z) / sqrt_br(z*z*z, a);
}
```

これらの F(z) において変数 a は, FORTRAN では SAVE 属性, C++ 言語では static 指定子を付して宣言されてい ることに注意する.これは函数呼び出しを跨いで局所変数の 値の保持を指示するものであり,直前の平方根の値の保持に もちいる.F(z) に複数の多価函数が現れる場合,それぞれ の多価函数ごとに SAVE 属性 (static 指定子)を付した変数 を宣言して利用すればよい.

この実装例による計算結果を Fig. 2 に示す.提案するアル ゴリズムにより,原像を近似する数値計算結果が得られてい ることがわかる.

4. 複素逆 Laplace 変換の数値的不安定性

Laplace 逆変換  $f = \mathcal{L}^{-1} F$  において,  $F \mapsto f$  の対応は, ー様ノルム (sup ノルム) で連続でない.したがって複素逆 Laplace 変換の数値計算においては,安定な数値計算過程に よる高精度な逆変換は達成し得ず,丸め誤差とスキームの近 似誤差の双方への対処が必要となる.



Fig. 2 Numerical results for the example (2) using the proposed square-root function with the Newton iteration  $(\sigma_0 = 5, k = 40, \mu = 40)$ 

Table 1 Relative Maximum Errors  $|f_{\sigma_0,N}(t) - f(t)|/|f(t)|$ with  $k = 40, \ \mu = 40$ 

| $\sigma_0$ | precision | $0 < t \leq 1$       | $1 < t \leq 20$       |
|------------|-----------|----------------------|-----------------------|
| 5          | double    | $5.82\times10^{-5}$  | $2.02\times 10^{-3}$  |
| 10         | double    | $2.64\times10^{-9}$  | $9.18\times 10^{-8}$  |
| 40         | double    | $6.01 	imes 10^{-1}$ | $3.35 	imes 10^1$     |
| 40         | 50 digits | $2.12\times10^{-18}$ | $2.05\times 10^{-15}$ |

細野の方法では,任意の閉区間  $I \subset [0,\infty)$  に対して

$$\lim_{\sigma_0 \to \infty} \sup_{s \in I} \left| E(s, \sigma_0) - e^s \right| = 0$$

が成立する.これは,高精度な逆変換には $\sigma_0$ を大きくとれ ばよいことを示唆している.一方, $\sigma_0$ を大きく設定すると,  $e^{zt}$ の実部が増大し,離散スキームの不安定性を招く.すな わち, $\sigma_0$ を小さくとるとスキームは安定であるが $\sigma_0$ につ いての近似精度は低く, $\sigma_0$ を大きくとるとスキームは $\sigma_0$ に ついては数学的に高精度であるが数値的に不安定となる.数 値的に不安定なスキームでは丸め誤差が増大するため,い ずれの場合も倍精度計算では高精度な結果は達成し得ない. 実際,M(2)において幾つかの $\sigma_0$ に対する相対最大誤差を Table 1 に示す. $\sigma_0 = 10$ としたときの誤差は,いずれの区 間においても $\sigma_0 = 5$ での誤差に比して減少している.一方, より大きな $\sigma_0 = 40$ における数値解は Fig. 3 に示すものと なり,数値計算が破綻していることがわかる.

上述の問題点, すなわち  $\sigma_0$  の値を大きく設定した高精度 スキームの数値的不安定性の克服のため, ここでは多倍長 計算を適用し,高精度な近似逆変換の実現を図る.10進50 桁の精度で  $\sigma_0 = 40$ とすると, 誤差は Table 1 に示すとお り  $\sigma_0 = 10$ の場合より小さくなり, 数値的に不安定なスキー ムにより高精度な結果が得られていることがわかる.ただ し前述のアルゴリズムでの Newton 法の収束判定基準値を  $1.0 \times 10^{-50}$ とした.このとき Xeon X5570 (2.93GHz) にお



Fig. 3 Instability of numerical results for the example (2) with  $\sigma_0 = 40$  in double precision  $(k = 40, \mu = 40)$ 

ける計算時間は, 倍精度計算は約 0.03 秒, exflib<sup>(5)</sup> による 50 桁での計算は約 0.65 秒であった. 倍精度に比して計算時 間を要するものの, 不安定スキームにおいても信頼性の高い 数値計算が実現される.

謝辞 本研究の遂行にあたり,登坂宣好教授(東京電機大学) および Sheen Dongwoo 教授(ソウル大学)に有益なご助言を 頂きました.本研究は科研費(若手研究(B) No. 20040057, 基盤研究(B) No. 22340018)の助成を受けました.

## 参考文献

- (1) 荒井政大,林久志,三宅達也,長秀雄,内山友成:レー ザー超音波を用いた薄膜の密着強度評価に関する境界 要素解析,計算数理工学論文集,9(2009), pp. 25–30.
- (2) Cohen, A. M. : Numerical methods for Laplace transform inversion, (2007), Springer.
- (3) Davies, B. and Martin, B. : Numerical inversion of the Laplace transform: a survey and comparison of methods, J. Comput. Phys., 33(1979), pp. 1–32.
- (4) Duffy, D. G. : On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications, ACM Trans. Math. Software, 19(1993), pp. 333–359.
- (5) 藤原宏志:高速な多倍長計算環境の PC・WS 上での実現,計算数理工学レビューNo.2005-1(2005), pp. 33-40.
- (6) Fujiwara, H. : Numerical real inversion of the Laplace transform by reproducing kernel and multiple-precision arithmetic, *Proceedings of the 7th International ISAAC Congress*, (2010), pp.289–295.
- (7) 細野敏夫: 数値ラプラス変換, 電気学会論文誌 A, 99(1979), pp. 494–500.
- (8) Sheen, D., Sloan, I. H. and Thomée, V. : A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, *IMA J. Num. Anal.*, **23**(2002), pp. 269–299.